Subscribe to RSS
DOI: 10.1055/s-2006-950279
A Simple Procedure for the Synthesis of 4-Aza-podophyllotoxin Derivatives in Water under Microwave Irradiation Conditions
Publication History
Publication Date:
09 October 2006 (online)
Abstract
4-Aza-podophyllotoxin derivatives were synthesized via the three-component reaction of an aldehyde, an aromatic amine, and either tetronic acid or 1,3-indanedione in water under microwave irradiation conditions. This new protocol has the advantages of higher yield, lower cost, reduced environmental impact, and convenient procedure.
Key words
multicomponent reactions - heterocycles - indenoquinoline - 4-aza-podophyllotoxin - microwave irradiation
- For an overview of multicomponent reactions, see:
-
1a
Zhu J.Bienaymé H. Multicomponent Reactions Wiley-VCH; Weinheim: 2005. - For recent reviews see:
-
1b
Ramón DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 -
1c
Simon C.Constantieux T.Rodriguez J. Eur. J. Org. Chem. 2004, 4957 -
1d
Zhu J. Eur. J. Org. Chem. 2003, 1133 -
1e
Orru RVA.de Greef M. Synthesis 2003, 1471 -
1f
Nair V.Rajesh C.Vinod AU.Bindu S.Sreekanth AR.Mathen JS.Balagopal L. Acc. Chem. Res. 2003, 36: 899 -
1g
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
1h
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
1i
Tietze LF.Modi A. Med. Res. Rev. 2000, 20: 304 -
2a
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
2b
Lidström P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 -
2c
Gabriel C.Gabriel S.Grant EH.Halstead BSJ.Mingos DMP. Chem. Soc. Rev. 1998, 27: 213 -
3a
Varma RS. Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation AstraZeneca Research Foundation India; Bangalore, India: 2002. -
3b
Varma RS. In Microwaves in Organic SynthesisLoupy A. Wiley-VCH; Weinheim: 2002. p.181 -
3c
Larhed M.Moberg C.Hallberg A. Acc. Chem. Res. 2002, 35: 717 -
3d
Kappe CO.Stadler A. In Microwaves in Organic SynthesisLoupy A. Wiley-VCH; Weinheim: 2002. p.405 -
4a
Li CJ.Chan TH. Organic Reactions in Aqueous Media John Wiley & Sons; New York: 1997. -
4b
Grieco PA. Organic Synthesis in Water Blackie Academic & Professional; London: 1998. -
4c
Lubineau A.Auge J. In Modern Solvents in Organic SynthesisKnochel P. Springer-Verlag; Berlin: 1999. -
5a
Breslow R.Maitra U.Rideout DC. Tetrahedron Lett. 1983, 24: 1901 -
5b
Tan XH.Hou YQ.Huang C.Liu L.Guo QX. Tetrahedron 2004, 60: 6129 -
6a
Copley SD.Knowles JR. J. Am. Chem. Soc. 1987, 109: 5008 -
6b
Khosropour AR.Khodaei MM.Kookhazadeh M. Tetrahedron Lett. 2004, 45: 1725 -
7a
Hitotsuyanagi Y.Kobayashi M.Fukuyo M.Takeya K.Itokawa H. Tetrahedron Lett. 1997, 38: 8295 -
7b
Hitotsuyanagi Y.Fukuyo M.Tsuda K.Kobayashi M.Ozeki A.Itokawa H.Takeya K. Bioorg. Med. Chem. Lett. 2000, 10: 315 -
7c
Tratrat C.Giorgi-Renault S.Husson HP. Org. Lett. 2002, 4: 3187 -
8a
Tu SJ.Miao CB.Gao Y.Fang F.Zhuang QY.Feng YJ.Shi DQ. Synlett 2004, 255 -
8b
Tu SJ.Li TJ.Shi F.Wang Q.Zhang JP.Xu JN.Zhu XT.Zhang XJ.Zhu SL.Shi DQ. Synthesis 2005, 3045 -
10a
Anzini M.Cappelli A.Vomero S.Cagnotto A.Skorupska M. Med. Chem. Res. 1993, 3: 44 -
10b
Quraishi MA.Thakur VR.Dhawan SN. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989, 28: 891 -
10c
Yamato M.Takeuchi Y.Hashigaki K.Ikeda Y.Ming-rong C.Takeuchi K.Matsushima M.Tsuruo T.Tashiro T.Tsukagoshi S.Yamashita Y.Nakano H. J. Med. Chem. 1989, 32: 1295 -
10d
Deady LW.Desneves J.Kaye AJ.Finlay GJ.Baguley BC.Denny WA. Bioorg. Med. Chem. 2000, 8: 977 -
10e
Brooks JR.Berman C.Hichens M.Primka RL.Reynolds GF.Rasmusson GH. Proc. Soc. Exp. Biol. Med. 1982, 169: 67 -
10f
Rampa A.Bisi A.Belluti F.Gobbi S.Valenti P.Andrisano V.Cavrini V.Cavalli A.Recanatini M. Bioorg. Med. Chem. 2000, 8: 497 -
10g
Venugopalan B.Bapat CP.DeSouza EP.DeSouza NJ. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1992, 31: 35 -
12a
Proks V.Holik M. Collect. Czech. Chem. Commun. 2004, 69: 1566 -
12b
Rothenberg G.Downie AP.Raston CL.Scott JL. J. Am. Chem. Soc. 2001, 123: 8701 -
12c
Froeyen P. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 81: 37
References and Notes
Compounds 6; General Procedure: All reactions were performed in a monomodal EmrysTM Creator from Personal Chemistry, Uppsala, Sweden. In a 10-mL EmrysTM reaction vial, aldehyde 3 (1 mmol), aromatic amine 4 (1 mmol), tetronic acid 5 (1 mmol), and H2O (2 mL) were mixed and then capped. The mixture was irradiated at 150 W and 100 °C for a given time. The reaction mixture was cooled to r.t. and filtered to give the crude product, which was further purified by recrystallization (DMF-EtOH) to give pure 4-aza-podophyllotoxin derivatives 6.
Compound 6c: Yellow solid; mp > 300 °C. IR (KBr): 3233, 3181, 3119, 3075, 2985, 2931, 1712, 1640, 1545, 810, 756, 689 cm-1. 1H NMR (DMSO-d
6, 400 MHz): δ = 10.01 (1 H, s, NH), 7.46 (2 H, d, J = 8.4 Hz, ArH), 7.16 (2 H, d, J = 8.0 Hz, ArH), 6.96 (1 H, d, J = 7.6 Hz, ArH), 6.85-6.82 (2 H, m, ArH), 5.00 (1 H, s, CH), 4.97-4.85 (2 H, m, CH2), 2.13 (3 H, s, CH3). Anal. Calcd for C18H14BrNO2: C, 60.69; H, 3.96; N, 3.93. Found: C, 60.75; H, 3.90; N, 3.89. Compound 6h: Yellow solid; mp >300 °C. IR (KBr): 3276, 3059, 2927, 2858, 1727, 1645, 1538, 1509, 1488, 803, 782, 758, 733, 723 cm-1. 1H NMR (DMSO-d
6, 400 MHz): δ = 10.28 (1 H, s, NH), 8.22 (1 H, d, J = 8.4 Hz, ArH), 7.86 (1 H, d, J = 8.0 Hz, ArH), 7.65-7.49 (3 H, m, ArH), 7.30-7.27 (2 H, m, ArH), 7.19-7.07 (3 H, m, ArH), 5.24 (1 H, s, CH), 5.11-4.97 (2 H, m, CH2). Anal. Calcd for C21H14FNO2: C, 76.12; H, 4.26; N, 4.23. Found: C, 76.23; H, 4.20; N, 4.16. Compound 6q: Yellow solid; mp >300 °C. IR (KBr): 3231, 3108, 3057, 2958, 2934, 1722, 1650, 1600, 1584, 1532, 814, 777, 742 cm-1. 1H NMR (DMSO-d
6, 400 MHz): δ = 10.27 (1 H, s, NH), 7.86-7.79 (3 H, m, ArH), 7.39-7.27 (3 H, m, ArH), 7.11 (2 H, d, J = 8.8 Hz, ArH), 6.75 (2 H, d, J = 8.4 Hz, ArH), 5.61 (1 H, s, CH), 4.98-4.87 (2 H, m, CH2), 3.64 (3 H, s, OCH3). Anal. Calcd for C22H17NO3: C, 76.95; H, 4.99; N, 4.08. Found: C, 77.01; H, 4.95; N, 4.02.
Compounds 8; General Procedure: In a 10-mL EmrysTM reaction vial aldehyde 3 (1 mmol), aromatic amine 4 (1 mmol), 1:3-indanedione 7 (1 mmol), and H2O (2 mL) were mixed and then capped. The mixture was irradiated at 150 W and 100 °C for a given time. The reaction mixture was cooled to r.t. and filtered to give the crude product which was further purified by recrystallization (DMF-EtOH) to give pure indeno[1,2-b]quinoline derivatives 8. Compound 8m: Yellow solid; mp >300 °C. IR (KBr): 3220, 3065, 2855, 1710, 1662, 1574, 1533, 1485, 858, 738, 645 cm-1. 1H NMR (DMSO-d 6, 400 MHz): δ = 10.99 (1 H, s, NH), 7.94 (1 H, d, J = 8.8 Hz, ArH), 7.87 (2 H, t, J = 8.0 Hz, ArH), 7.63 (1 H, d, J = 7.2 Hz, ArH), 7.53 (1 H, d, J = 8.8 Hz, ArH), 7.49-7.34 (6 H, m, ArH), 7.27 (1 H, d, J = 8.0 Hz, ArH), 7.20 (2 H, d, J = 8.4 Hz, ArH), 5.80 (1 H, s, CH). Anal. Calcd for C26H16BrNO: C, 71.25; H, 3.68; N, 3.20. Found: C, 71.34; H, 3.62; N, 3.10.
13Compound 9f: In a 10-mL EmrysTM reaction vial 3-nitro-benzaldehyde (3e, 2 mmol), p-toluidine (4b, 2 mmol), and H2O (3 mL) were mixed and then capped. The mixture was irradiated at 150 W and 100 °C for 2 min. The reaction mixture was cooled to r.t. and filtered to give the crude product which was further purified by recrystallization (EtOH) to give pure N-(3-nitrobenzylidene)-4-methyl-benzenamine (9f). Yellow solid; mp 87-88 °C. IR (KBr): 3092, 3026, 2879, 1622, 1572, 1440, 1268, 1044, 860, 765 cm-1. 1H NMR (DMSO-d 6, 400 MHz): δ = 8.76 (1 H, s, CH), 8.58 (1 H, s, ArH), 8.33 (1 H, d, J = 8.0 Hz, ArH), 8.27 (1 H, d, J = 7.6 Hz, ArH), 7.68 (1 H, d, J = 8.0 Hz, ArH), 7.29-7.20 (4 H, m, ArH), 2.41 (3 H, s, CH3). Anal. Calcd for C14H12N2O2: C, 69.99; H, 5.03; N, 11.66. Found: C, 70.09; H, 4.95; N, 11.60.
14Reaction of Schiff Base 9f and Tetronic Acid (5): In a 10-mL EmrysTM reaction vial, N-(3-nitrobenzylidene)-4-methyl-benzenamine (9f, 1 mmol), tetronic acid (5, 1 mmol), H2O (2 mL) were mixed and then capped. The mixture was irradiated at 150 W and 100 °C for 7 min. The reaction mixture was cooled to r.t. and filtered to give the crude product, which was further purified by recrystallization (DMF-EtOH) to give pure 7-methyl-9-(3-nitrophenyl)-4,9-dihydrofuro[3,4-b]quinolin-1 (3H)-one(6f). Yellow solid; mp >300 °C. IR (KBr): 3237, 3183, 3121, 3077, 2932, 1714, 1640, 1544, 1348, 1205, 1109, 934, 861 cm-1. 1H NMR (DMSO-d 6, 400 MHz): δ = 10.11 (1 H, s, NH), 8.05 (2 H, d, J = 7.2 Hz, ArH), 7.69 (1 H, d, J = 7.6 Hz, ArH), 7.60 (1 H, t, J = 8.0 Hz, ArH), 7.00 (1 H, d, J = 8.4 Hz, ArH), 6.89 (2 H, t, J = 8.0 Hz, ArH), 5.26 (1 H, s, CH), 5.02-4.88 (2 H, m, CH2), 2.13 (3 H, s, CH3). Anal. Calcd for C18H14N2O4: C, 67.07; H, 4.38; N, 8.69. Found: C, 67.15; H, 4.29; N, 8.54.
15The single crystal growth was carried out in EtOH-DMF at r.t. X-ray crystallographic analysis was performed with a Siemens SMART CCD and a Semens P4 diffractometer (graphite monochromator, Mo Kα radiation λ = 0.71073 Å). Crystal data for 6n: Empirical formula C21H14FNO2, yellow, crystal dimension 0.23 × 0.18 × 0.16 mm, monoclinic, space group C2/c, a = 21.010 (7) Å, b = 11.388 (4) Å, c = 15.123 (5) Å, α = 90°, β = 121.380 (5)°, γ = 90°, V = 3089.3 (16) Å3, Mr = 331.33, Z = 8, Dc = 1.425 Mg/m3, λ = 0.71073 Å, µ (Mo-Kα) = 0.100 mm-1, F(000) = 1376, S = 0.991, R1 = 0.049, wR2 = 0.136. Crystallographic data for the structures of 6n reported in this letter have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-608399.