References and Notes
-
1a
Yanagisawa A.
Habaue S.
Yamamoto H.
J. Am. Chem. Soc.
1991,
113:
8955
-
1b
Yanagisawa A.
Habaue S.
Yasue K.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
6130
-
Reviews:
-
1c
Yanagisawa A.
Yamamoto H. In
Active Metals. Preparation, Characterization, Applications
Fürstner A.
VCH;
Weinheim:
1996.
p.61
-
1d
Yanagisawa A. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.695
-
1e
Yanagisawa A. In
Main Group Metals in Organic Synthesis
Vol. 1:
Yamamoto H.
Oshima K.
Wiley-VCH;
Weinheim:
2004.
p.175
-
For reactions of organostrontium compounds, see:
-
1f
Miyoshi N.
Kamiura K.
Oka H.
Kita A.
Kuwata R.
Ikehara D.
Wada M.
Bull. Chem. Soc. Jpn.
2004,
77:
341
-
1g
Miyoshi N.
Ikehara D.
Kohno T.
Matsui A.
Wada M.
Chem. Lett.
2005,
34:
760
-
1h
Miyoshi N. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.685
-
2a
Sell MS.
Rieke RD.
Synth. Commun.
1995,
25:
4107
-
Reviews:
-
2b
Rieke RD.
Sell MS.
Klein WR.
Chen T.-A.
Brown JD.
Hanson MV. In
Active Metals. Preparation, Characterization, Applications
Fürstner A.
VCH;
Weinheim:
1996.
p.1
-
2c
Rieke RD.
Hanson MV.
Tetrahedron
1997,
53:
1925
- 3
Yanagisawa A.
Takahashi H.
Arai T.
Chem. Commun.
2004,
580
-
For other reactions via a barium enolate, see:
-
4a
Yamada YMA.
Shibasaki M.
Tetrahedron Lett.
1998,
39:
5561
-
4b
Yamada YMA.
Uozumi Y.
Org. Lett.
2006,
8:
1375
-
For reviews of catalytic direct aldol reaction with unmodified ketones, see:
-
5a
Gröger H.
Wilken J.
Angew. Chem. Int. Ed.
2001,
40:
529
-
5b
List B.
Synlett
2001,
1675
-
5c
Matsunaga S.
Ohshima T.
Shibasaki M.
Adv. Synth. Catal.
2002,
344:
3
-
5d
Palomo C.
Oiarbide M.
García JM.
Chem. Eur. J.
2002,
8:
36
-
5e
Alcaide B.
Almendros P.
Angew. Chem. Int. Ed.
2003,
42:
858
-
5f
Shibasaki M.
Yoshikawa N.
Matsunaga S.
In Comprehensive Asymmetric Catalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
2004.
p.135
-
5g
Modern Aldol Reactions
Vol. 1 and 2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
-
5h Quite recently, Kobayashi et al. reported direct aldol reactions of amides with aldehydes catalyzed by barium phenoxides: Saito S.
Kobayashi S.
J. Am. Chem. Soc.
2006,
128:
8704
-
For recent noticeable examples of Michael addition of enolates, see:
-
6a
Harada S.
Kumagai N.
Kinoshita T.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
2582
-
6b
Gnaneshwar R.
Wadgaonkar PP.
Sivaram S.
Tetrahedron Lett.
2003,
44:
6047
-
6c
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
-
6d
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2005,
1917
-
6e
Wang X.
Adachi S.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Harada T.
J. Org. Chem.
2003,
68:
10046
-
6f
Harada T.
Adachi S.
Wang X.
Org. Lett.
2004,
6:
4877
-
6g
Harada T.
Yamauchi T.
Adachi S.
Synlett
2005,
2151
-
6h
Jaber N.
Assié M.
Fiaud J.-C.
Collin J.
Tetrahedron
2004,
60:
3075
-
6i
Nakagawa T.
Fujisawa H.
Nagata Y.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2005,
78:
236
-
6j
Kumaraswamy G.
Jena N.
Sastry MNV.
Padmaja M.
Markondaiah B.
Adv. Synth. Catal.
2005,
347:
867
-
6k
Wang W.
Li H.
Wang J.
Org. Lett.
2005,
7:
1637
-
9a
Boyer J.
Corriu RJP.
Perz R.
Reye C.
J. Organomet. Chem.
1980,
184:
157
-
9b
Kobayashi T.
Kawate H.
Kakiuchi H.
Kato H.
Bull. Chem. Soc. Jpn.
1990,
63:
1937
-
9c
Shimizu S.
Shirakawa S.
Suzuki T.
Sasaki Y.
Tetrahedron
2001,
57:
6169
7 We examined catalytic activity of NaOi-Pr, KOi-Pr, and Mg(Oi-Pr)2 in the present reaction, however, these metal isopropoxides were found to be less effective, [M(Oi-Pr)n, equiv, time, yield]: NaOi-Pr, 0.4 equiv, 4 h, 40%; KOi-Pr, 0.4 equiv, 4 h, 35%; Mg(Oi-Pr)2, 0.2 equiv, 18 h, <1%.
8
Typical Procedure for Tandem Cross-Coupling Reaction of Ketones with Aldehydes Catalyzed by Barium Isopropoxide: Synthesis of 1,3,5-Triphenylpentane-1,5-dione (Entry 2 in Table 3).
An oven-dried, 30 mL two-necked round-bottomed flask equipped with a Teflon®-coated magnetic stirring bar was flushed with argon. Then, Ba(Oi-Pr)2 (26 mg, 0.10 mmol) was put into the apparatus and covered with dry DMF (5 mL) and i-PrOH (1.5 mL, 20 mmol), and the mixture was stirred for 10 min at r.t. To the resulting solution were added acetophenone (0.35 mL, 3.0 mmol) and benzaldehyde (0.10 mL, 1.0 mmol). After being stirred for 7 h at r.t., the mixture was treated with a sat. aq NH4Cl solution (10 mL) at this temperature and the aqueous layer was extracted with Et2O (20 mL). The combined organic extracts were dried over anhyd Na2SO4 and concentrated in vacuo after filtration. The residual crude product was purified by column chromatog-raphy on silica gel to give the 1,5-diketone (0.25 g, 76% yield) as colorless crystals.
Spectral Data of the Product.
TLC: R
f
= 0.52 (hexane-EtOAc, 3:1). IR (KBr): 3062, 3025, 2960, 2888, 1686, 1668, 1597, 1580, 1496, 1449, 1422, 1408, 1352, 1268, 1207 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.36 (dd, 2 H, J = 16.4 Hz, 7.0 H, CH2), 3.50 (dd, 2 H, J = 16.7 Hz, 7.0 H, CH2), 4.04-4.11 (m, 1 H, CH), 7.15-7.21 (m, 1 H, arom.), 7.24-7.29 (m, 4 H, arom.), 7.43-7.46 (m, 4 H, arom.), 7.53-7.57 (m, 2 H, arom.), 7.94-7.96 (m, 4 H, arom.). 13C NMR (100 MHz, CDCl3): δ = 36.5, 44.4, 126.2, 127.1, 127.3, 127.7, 128.1, 132.6, 136.4, 143.5, 198.0. The above-mentioned spectral data (IR, 1H NMR, and 13C NMR) of the product indicated good agreement with reported data.
[9]