RSS-Feed abonnieren
DOI: 10.1055/s-2006-948191
Stereoselective Synthesis of the Epoxysuccinyl Peptide E-64c
Publikationsverlauf
Publikationsdatum:
09. August 2006 (online)
Abstract
A highly diastereoselective PTC epoxidation is employed in the synthesis of the potent cysteine protease inhibitor E-64c.
Key words
epoxysuccinates - asymmetric epoxidation - quaternary ammonium salts - phase-transfer catalysis
-
1a
Leung-Toung R.Zhao YQ.Li WR.Tam TF.Karimian K.Spino M. Curr. Med. Chem. 2006, 13: 547 -
1b
Powers JC.Asgian JL.Ekici OD.James KE. Chem. Rev. 2002, 102: 4639 - 2
Meara JP.Rich DH. J. Med. Chem. 1996, 39: 3357 -
3a
Barrett AJ.Kembhavi AA.Brown MA.Kirschke H.Knight CG.Tamai M.Hanada K. Biochem. J. 1982, 201: 189 -
3b
Tamai M.Hanada K.Adachi T.Oguma K.Kashiwagi K.Omura S.Ohzeki M. J. Biochem. 1981, 90: 255 -
3c
Hanada K.Tamai M.Ohmura S.Sawada J.Seki T.Tanaka I. Agric. Biol. Chem. 1978, 42: 529 - See for example:
-
4a
Verhelst SHL.Bogyo M. ChemBioChem 2005, 6: 824 -
4b
Chehade KAH.Baruch A.Verhelst SHL.Bogyo M. Synthesis 2005, 240 -
4c
James KE.Asgian JL.Li ZZ.Ekici OD.Rubin JR.Mikolajczyk J.Salvesen GS.Powers JC. J. Med. Chem. 2004, 47: 1553 -
4d
Detterbeck R.Hesse M. Helv. Chim. Acta 2003, 86: 222 -
4e
Roush WR.Hernandez AA.McKerrow JH.Selzer PM.Hansell E.Engel JC. Tetrahedron 2000, 56: 9747 -
4f
Goursalin BJ.Lachance P.Bonneau PR.Storer AC.Kirschke H.Broemme D. Bioorg. Chem. 1994, 22: 227 -
4g
Giordano C.Calabretta R.Gallina C.Consalvi V.Scandurra R.Noya FC.Franchini C. Eur. J. Med. Chem. 1993, 28: 917 -
4h
Huang ZY.McGowan EB.Detwiler TC. J. Med. Chem. 1992, 35: 2048 - 5 For an alternative approach see:
Sarabia F.Sanchez-Ruiz A.Chammaa S. Bioorg. Med. Chem. 2005, 13: 1691 -
6a
Lygo B.To DCM. Chem. Commun. 2002, 2360 -
6b
Lygo B.To DCM. Tetrahedron Lett. 2001, 42: 1343 -
6c
Lygo B.Wainwright PG. Tetrahedron 1999, 55: 6289 -
6d
Lygo B.Wainwright PG. Tetrahedron Lett. 1998, 39: 1599 - 7 For a recent review on epoxidation via asymmetric catalysis, see:
Xia Q.-H.Ge H.-Q.Ye C.-P.Liu Z.-M.Su K.-X. Chem. Rev. 2005, 105: 1603 - See for example:
-
8a
Jensen JS.Lam Y.-F.Helz GR. Environ. Sci. Technol. 1999, 33: 3568 -
8b
Orton KJP.Bradfield AE. J. Chem. Soc. 1927, 986 - 9
Lygo B.Andrews BI. Metal-Catalysed Carbon-Carbon Bond-Forming Reactions, In Catalysts for Fine Chemical Synthesis Vol. 3:Roberts SM.Whittall J.Mather P.McCormack P. J. Wiley and Sons, Ltd.; Chichester: 2004. p.27-33 - 11
Tamai M.Yokoo C.Murata M.Oguma K.Sota K.Sato E.Kanaoka Y. Chem. Pharm. Bull. 1987, 35: 1098 - 12 For further discussion of this, see:
Roush WR.Hernandez AA.Zepeda G. Synthesis 1999, 1500
References and Notes
General Procedure for Asymmetric Epoxidation.
A mixture of 15% aq NaOCl (9.0 mmol) and 12 M aq KOH (1 mL) was added dropwise to a solution of enone (3.0 mmol) and the appropriate catalyst (0.15 mmol) in PhMe (70 ml). The resulting mixture was stirred vigorously (1000 rpm) at r.t. for 30 min, then a second portion of 15% aq NaOCl (9.0 mmol) was added and stirring continued for 4-16 h. Then, H2O (100 mL) was added and layers separated. The aqueous was extracted with EtOAc (2 × 100 mL) and the combined organics were dried (Na2SO4), then concentrated under reduced pressure. The residue was then purified by chromatography on silica gel.
Selected NMR Data.
Compound 9a: 1H NMR (400 MHz, CDCl3): δ = 7.99-7.95 (2 H, m, ArH), 7.64-7.46 (3 H, m, ArH), 6.60 (1 H, br d, J = 8.5 Hz, NH), 4.72-4.64 (1 H, m, NHCH), 4.27 (1 H, d, J = 2.0 Hz, NHCOCH), 3.78 (3 H, s, OMe), 3.72 (1 H, d, J = 2.0 Hz, ArCOCH), 1.78-1.58 [3 H, m, CH2, CH(CH3)2], 1.01 (3 H, d, J = 6.5 Hz, CH3), 0.99 (3 H, d, J = 6.5 Hz, CH3). 13C NMR (100 MHz, CDCl3): δ = 191.5 (C), 172.5 (C), 166.2 (C), 134.9 (C), 134.4 (CH), 129.0 (CH), 128.5 (CH), 56.2 (CH), 54.9 (CH), 52.5 (CH3), 50.4 (CH), 41.3 (CH2), 25.0 (CH), 22.7 (CH3), 22.0 (CH3).
Compound 10a: 1H NMR (400 MHz, CDCl3): δ = 7.99-7.95 (2 H, m, ArH), 7.64-7.46 (3 H, m, ArH), 6.50 (1 H, br d, J = 8.5 Hz, NH), 4.72-4.64 (1 H, m, NHCH), 4.41 (1 H, d, J = 2.0 Hz, NHCOCH), 3.78 (3 H, s, OMe), 3.73 (1 H, d, J = 2.0 Hz, ArCOCH), 1.78-1.58 [3 H, m, CH2, CH(CH3)2], 1.01 (3 H, d, J = 6.5 Hz, CH3), 0.99 (3 H, d, J = 6.5 Hz, CH3). 13C NMR (100 MHz, CDCl3): δ = 191.3 (C), 172.9 (C), 166.4 (C), 134.9 (C), 134.4 (CH), 129.0 (CH), 128.5 (CH), 55.8 (CH), 54.9 (CH), 52.5 (CH3), 50.2 (CH), 41.0 (CH2), 24.8 (CH), 22.8 (CH3), 21.7 (CH3).