RSS-Feed abonnieren
DOI: 10.1055/s-2006-948166
A Novel Methodology for the Synthesis of Fumarates and Maleates
Publikationsverlauf
Publikationsdatum:
24. Juli 2006 (online)
Abstract
The stereoselectivity of both the Wittig and the Horner-Wadsworth-Emmons reactions allows for the synthesis of orthogonally protected fumarates and maleates, respectively, from α-keto esters. This methodology has been shown to be useful in the synthesis of a derivative of the pH sensitive cis-aconitic linker, important for prodrug approaches in drug delivery. We have incorporated this linker into a cholesterol-based PEGylated lipid, for its potential use in liposomal drug and gene delivery. The synthesized lipids have also been shown to be pH degradable using HPLC analyses.
Key words
Wittig - Horner-Wadsworth-Emmons (HWE) - ozonolysis - cis-aconitic - PEGylated lipids
-
1a
Kosterelos K.Miller AD. Chem. Soc. Rev. 2005, 970 -
1b
Fenske DB.Cullis PR. Methods Enzymol. 2005, 7 - 2
Gabizon A.Papahadjopoulos D. Proc. Natl. Acad. Sci. U.S.A. 1998, 6949 - 3
Woodle MC.Matthey KK.Newman MS.Hidayat JE.Collins LR.Redemann C.Martin FJ.Papahadjopolous D. Biochim. Biophys. Acta 1992, 1105: 193 -
4a
Holland JW.Hui C.Cullis PR.Madden TD. Biochemistry 1996, 35: 2618 -
4b
Keller M.Harbottle RP.Perouzel E.Colin M.Shah L.Rahim A.Vaysse L.Bergau A.Moritz S.Brahimi-Horn C.Coutelle C.Miller AD. ChemBioChem 2003, 4: 286 - 5
Guo X.Szoka FC. Acc. Chem. Res. 2003, 36: 335 - 6
Kirpotin D.Hong K.Mullah N.Papahadjopoulos D.Zalipsky S. FEBS Lett. 1996, 388: 115 - 7
Pak CC.Ali S.Janoff AS.Meers P. Biochim. Biophys. Acta 1998, 1372: 13 - 8
Kratz F.Beyer U.Schutte MT. Crit. Rev. Ther. Drug Carrier Sys. 1999, 245 - 9
Zelphati O.Szoka FC. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 11493 - 10
Askon A.Cho MJ. J. Pharm. Sci. 2002, 91: 903 -
11a
Guo X.Mackay JA.Szoka FC. Biophys. J. 2003, 84: 1784 -
11b
Guo X.Szoka FC. Bioconj. Chem. 2001, 12: 291 -
12a
Hamann PR.Hinman LM.Hollander I.Beyer CF.Lindh D.Holcomb R.Hallet W.Tsou HR.Upeslacis J.Shochat D.Mountain A.Flowers DA.Bernstein I. Bioconjugate Chem. 2002, 13: 47 -
12b
Ulbrich K.Etrych T.Chytil P.Pechar M.Jelinkova M.Rihova B. Int. J. Pharm. 2004, 277: 63 -
12c
Ulbrich K.Etrych T.Chytil P.Jelinkova M.Rihova B. J. Controlled Release 2003, 87: 33 -
13a
Shin J.Shum P.Thompson DH. J. Controlled Release 2003, 91: 187 -
13b
Boomer JA.Inerowicz HD.Zhang ZY.Berstrand N.Edwards K.Kim JM.Thompson DH. Langmuir 2003, 19: 6408 -
14a
Alshamkhani A.Duncan R. Int. J. Pharm. 1995, 122: 107 -
14b
Reddy JA.Low PS. J. Controlled Release 2000, 64: 2737 -
14c
Drummond DC.Daleke DL. Chem. Phys. Lipids 1995, 75: 27 - 15
Bender ML. J. Am. Chem. Soc. 1957, 79: 1528 -
16a
Ulbrich K.Etrych T.Chytil P.Jelinkova M.Rihova B. J. Controlled Release 2003, 33 -
16b
Yoo HS.Lee EA.Park TG. J. Controlled Release 2002, 17 -
16c
Drummond DC.Daleke DL. Chem. Phys. Lipids 1995, 27 - 17
Fletcher S.Jorgensen MR.Miller AD. Org Lett. 2004, 4245 - 18
Shen WC.Ryser HJP. Biochem. Biophys. Res. Commun. 1981, 102: 1048 - 19
Remenyi J.Balazs B.Toth S.Falus A.Toth G.Hudecz F. Biochem. Biophys. Res. Commun. 2003, 303: 556 - 20
Wasserman HH.Ho W.-B. J. Org. Chem. 1994, 4364 - 24
Diaz M.Branchadell V.Oliva A.Ortuno RM. Tetrahedron 1995, 51: 11841 - 25
Gibson FS.Bergmeier SC.Rapoport H. J. Org. Chem. 1994, 59: 3216
References and Notes
General Procedure for the Formation of the α-Keto Esters.
O2 gas was bubbled through a solution of cyano keto phosphorane (2 mmol) in CH2Cl2 (25 mL) at r.t. for 10 min, cooled to -78 °C for 5 min. The solution then had O3 bubbled through for 40 min at -78 °C until the color of the solution had changed to a murky green, via a bright yellow. Bubbling N2 gas through the solution still at -78 °C for 10 min quenched the excess O3, once the solution returned to bright yellow in color the alcohol (2.4 mmol) was added. The solution was then purged with N2 and stirred at -78 °C for 2 h until the solution turned colorless. The crude product was purified using flash chromatography on silica gel to afford the α-keto ester as a clear oil.
Typical Procedure for the Formation of a Fumarate (
6a).
To a solution of the α-keto ester (0.25 mmol) in anhyd THF (6 mL) was added tert-butoxycarbonylmethylene triphenyl phosphorane (0.188 g, 0.5 mmol) dropwise (via syringe pump 2 mL/h) in anhyd THF (4 mL) at 0 °C under a nitrogen atmosphere. After 5 h the reaction was allowed to stir at r.t. for a further 10 h. The crude mixture was then concentrated in vacuo and purified using flash chromatography on silica gel to afford the desired fumarate.
IR (CH2Cl2 film): 3394, 2977, 2935, 1715, 1647, 1518, 1455, 1366, 1273, 1152, 974, 869 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.32-1.38 [2 H, m, CH2 (CH2)2C=C], 1.40-1.52 (4 H, m, 2 ¥ CH2), 1.43 (9 H, s, 3 ¥ CH3), 1.48 (9 H, s, 3 ¥ CH3), 2.72 (2 H, t, J = 7.6 Hz, CH2C=C), 3.07-3.10 (2 H, m, CH2NH), 3.77 (3 H, s, CH3), 4.52 (1 H, br, NH), 6.65 (1 H, s, trans-alkene). 13C NMR (100 MHz, CDCl3): δ = 26.73, 27.49 (2 ¥ CH2), 28.08, 28.48 [2 ¥ C(CH3)3], 28.78 (CH2), 29.72 (CH2), 40.49 (CH2NH), 52.35 (CH3), 78.94, 81.34 [2 ¥ C(CH3)3], 128.80 (CH=C), 145.80 (CH=C), 155.93 (CO2NH), 164.95, 167.65 (2 ¥ CO). MS (CI): m/z calcd for C19H34N1O6: 372.2386; found: 372.2382 [M+ + H]; m/z (%) 389 (15) [M+ + NH4], 372 (100) [M+ + H], 333 (76) [M+ - (CH3)3 + NH4], 272 (52) [M+ - (CH3)3CO2].
Typical Procedure for the Formation of Maleates. To a stirred suspension of NaH [0.01 g, 0.25 mmol (60% in mineral oil, w/w)] in anhyd THF (1 mL) at 0 °C and under a nitrogen atmosphere, was added tert-butyl-P,P-dimethylphosphonoacetate (0.05 mL, 0.25 mmol) in anhyd THF (1 mL) dropwise. After 30 min, the α-keto phosphorane (0.25 mmol) in THF (2 mL) was added dropwise over 1 h. After 3 h the excess NaH was neutralized with H2O (0.1 mL) and the crude mixture concentrated in vacuo, azetroped with MeOH. The crude mixture was purified using flash chromatography on silica gel (hexane-EtOAc, 7:1) to afford the desired maleate. IR (neat): 3400, 2977, 2934, 2863, 1715, 1519, 1367, 1248, 1159, 1066, 1003, 781 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.32-1.38 [2 H, m, CH2 (CH2)C=C], 1.40-1.52 (4 H, m, 2 ¥ CH2), 1.43 (9 H, s, 3 ¥ CH3), 1.48 (9 H, s, 3 ¥ CH3), 2.31 (2 H, t, J = 7.2 Hz, CH2C=C), 3.07-3.10 (2 H, m, CH2NH), 3.77 (3 H, s, CH3), 4.52 (1 H, br, NH), 5.69 (1 H, t, J = 1.4 Hz, cis-alkene). 13C NMR (100 MHz, CDCl3): δ = 25.98 (CH2), 26.64 (CH2), 27.91 [t-Bu C(CH3)3], 28.32 [Boc C(CH3)3], 29.68 (CH2), 34.08 (CH2C=C), 40.30 (CH2NH), 52.00 (CH3), 78.96 [Boc C(CH3)3], 81.33 [t-Bu C(CH3)3], 121.90 (CH=C), 147.83 (CH=C), 155.90 (CONH), 164.07 (CO), 169.25 (CO). MS (CI): m/z calcd for C19H37N2O6: 389.2651; found: 389.2645 [M+ + NH4 +]; m/z (%) = 389 (60) [M+ + NH4 +], 372 (80) [M+ + H], 333 (65), 316 (35), 277 (100) and 216 (33).