References and Notes
-
1a
Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
-
1b
Orru RVA.
de Greef M.
Synthesis
2003,
1471
-
1c
Bienaymé H.
Hulme C.
Oddon G.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
-
For leading references, see:
-
2a
Povarov LS.
Makhailov BM.
Izv. Akad. Nauk. SSSR
1963,
955
-
2b
Narasaka K.
Shibata T.
Heterocycles
1993,
35:
1039
-
2c
Kobayashi S.
Nagayama S.
J. Am. Chem. Soc.
1996,
118:
8977
-
2d
Crousse B.
Bégué J.-P.
Bonnet-Delpon D.
J. Org. Chem.
2000,
65:
5009
-
2e
Cheng D.
Zhou J.
Saiah E.
Beaton G.
Org. Lett.
2002,
4:
4411
-
2f
Zhou Y.
Jia X.
Li R.
Liu Z.
Liu Z.
Wu L.
Tetrahedron Lett.
2005,
46:
8937
-
2g
Lin X.-F.
Cui S.-L.
Wang Y.-G.
Tetrahedron Lett.
2006,
47:
3127
-
2h See also: Jiménez O.
de la Rosa G.
Lavilla R.
Angew. Chem. Int. Ed.
2005,
44:
6521
-
For some representative examples of the use of fluorous alcohols in organic synthesis, see:
-
3a
Ravikumar KS.
Kesavan V.
Crousse B.
Bonnet-Delpon D.
Bégué J.-P.
Organic Syntheses
Vol. 80:
Wiley;
New York:
2003.
p.184
-
3b
Spanedda MV.
Hoang VD.
Crousse B.
Bonnet-Delpon D.
Bégué J.-P.
Tetrahedron Lett.
2003,
44:
217
-
3c
Di Salvo A.
Spanedda MV.
Ourévitch M.
Crousse B.
Bonnet-Delpon D.
Synthesis
2003,
2231
-
3d
Magueur G.
Crousse B.
Ourévitch M.
Bégué J.-P.
Bonnet-Delpon D.
J. Org. Chem.
2003,
68:
9763
-
TFE has already been used as a superior solvent in other MCR’s:
-
3e
Park SJ.
Keum G.
Kang SB.
Koh HY.
Kim Y.
Lee DH.
Tetrahedron Lett.
1998,
39:
7109
-
3f
Cristau P.
Vors J.-P.
Zhu J.
Org. Lett
2001,
3:
4079
-
Reviews on fluorous alcohols:
-
4a
Bégué J.-P.
Bonnet-Delpon D.
Crousse B.
Synlett
2004,
18
-
4b
Bégué J.-P.
Bonnet-Delpon D.
Crousse B. In Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horvath IT.
Wiley-VCH;
Weinheim:
2004.
p.341
-
7a
Grieco PA.
Bahsas A.
Tetrahedron Lett.
1988,
29:
5855
-
7b See also: Mellor JM.
Derryman GD.
Tetrahedron
1995,
21:
6115
- 8
Haidekker MA.
Brady TP.
Lichlyter D.
Theodorakis EA.
Bioorg. Chem.
2005,
33:
415 ; and references therein
- 9
Vejdelek Z.
Protiva M.
Collect. Czech. Chem. Commun.
1990,
55:
1290
-
10a
Glass DB.
Weissberger A.
Org. Synth., Coll. Vol. III
Wiley;
New York:
1955.
p.504
-
10b
Katayama H.
Abe E.
Kaneko K.
J. Heterocycl. Chem.
1982,
19:
925
-
See also:
-
10c
Palma A.
Carrillo C.
Stashenko E.
Kouznetsov V.
Bahsas A.
Amaro-Luis J.
Tetrahedron Lett.
2001,
42:
6247
-
10d
Palma A.
Agredo JS.
Carrillo C.
Kouznetsov V.
Stashenko E.
Bahsas A.
Amaro-Luis J.
Tetrahedron
2002,
58:
8719
-
11a
Katritzky AR.
Rachwal B.
Rachwal S.
J. Org. Chem.
1996,
61:
3117
-
11b
Katritzky AR.
Luo Z.
Cui X.-L.
J. Org. Chem.
1999,
64:
3328
5 In the presence of styrene or N-vinyl pyrrolidine as dienophile, no reaction occurred over 24 h, while the alkyl aldimine decomposed in the medium.
6
Typical Procedure for the Synthesis of cis
-4-Ethoxy-1,2,3,4-tetrahydro-2-isopropylquinoline (
1b).
Isobutyraldehyde (1.2 mmol, 86 mg) and ethyl vinyl ether (1.2 mmol, 86 mg) were dissolved in TFE (1 mL) in a 5 mL test tube. A solution of aniline (1 mmol, 93 mg) in TFE (1 mL) was then slowly added over 15 min to the previous mixture under stirring. After stirring for 2 h, the solvent was evaporated in vacuo. The crude product was then purified by chromatography on florisil (cyclohexane-EtOAc, 9:1) to afford 1b as yellow crystals (171 mg, 78%); mp 74-76 °C. 1H NMR (300 MHz, CDCl3): δ = 1.02 (d, 3 H, J = 6.7 Hz), 1.03 (d, 3 H, J = 6.7 Hz), 1.33 (t, 3 H, J = 7.0 Hz), 1.75 (m, 2 H), 2.24 (ddd, 1 H, J = 2.5, 5.5, 12.1 Hz), 3.23 (ddd, 1 H, J = 2.5, 5.3, 11.2 Hz), 3.63 (m, 1 H), 3.79 (m, 1 H), 4.68 (dd, 1 H, J = 5.6, 10.2 Hz), 6.51 (d, 1 H, J = 7.8 Hz), 6.71 (t, 1 H, J = 7.4 Hz), 7.04 (t, 1 H, J = 7.6 Hz), 7.36 (d, 1 H, J = 7.6 Hz), NH not observed. 13C NMR (300 MHz, CDCl3): δ = 15.6, 18.0, 18.3, 30.3, 32.4, 56.1, 63.4, 74.1, 113.8, 117.1, 122.8, 126.9, 127.91, 144.6. Anal. Calcd for C14H21NO (219.32): C, 76.67; H, 9.65; N, 6.39. Found: C, 76.33; H, 9.99; N, 6.35.
12
Typical Procedure for the Synthesis of cis
,
cis
-1,7-Diethoxy-3-isopropyljulolidine (2).
Isobutyraldehyde (1.2 mmol, 103 mg) and ethyl vinyl ether (1.2 mmol, 86 mg) were dissolved in TFE (0.5 mL) in a 5 mL test tube. A solution of aniline (1 mmol, 93 mg) in TFE (0.5 mL) was then slowly added over 15 min to the previous mixture under stirring. After stirring for 2 h, a solution of formaldehyde (35% aq; 2 mmol, 172 mg) and ethyl vinyl ether (1.2 mmol, 86 mg) in TFE (1 mL) was added to the reaction mixture. After further stirring for 1 h, the solvent was evaporated in vacuo. The crude product was then purified by filtration on florisil (cyclohexane-EtOAc, 7:3) to afford 2 as an orange oil (218 mg, 72%). 1H NMR (400 MHz, CDCl3): δ = 0.88 (d, 3 H, J = 6.7 Hz), 1.00 (d, 3 H, J = 6.8 Hz), 1.25 (q, 6 H, J = 7.5 Hz), 2.00 (m, 4 H), 2.23 (oct, 1 H, J = 6.8 Hz), 3.00 (m, 1 H), 3.20 (m, 2 H), 3.60 (m, 2 H), 3.70 (m, 2 H), 4.26 (t, 1 H, J = 3.6 Hz), 4.42 (t, 1 H, J = 5.7 Hz), 6.60 (t, 1 H, J = 7.4 Hz), 7.09 (d, 1 H, J = 7.7 Hz), 7.20 (d, 1 H, J = 7.4 Hz). 13C NMR (400 MHz, CDCl3): δ = 15.6, 15.7, 17.2, 20.5, 27.0, 27.5, 29.0, 42.6, 62.0, 63.3, 63.7, 73.0, 73.9, 114.9, 121.7, 122.6, 128.2, 129.5, 142.1.
13 The cis-configuration was established by means of NOE experiments (NOESY) on product 3. The correlations are shown on the under drawing. Relative configurations of products 2 and 4 have been deduced by analogy (Figure
[2]
).