Synlett 2006(12): 1829-1834  
DOI: 10.1055/s-2006-947356
LETTER
© Georg Thieme Verlag Stuttgart · New York

Cerium(IV) Ammonium Nitrate (CAN): A Very Efficient Reagent for the Synthesis of Tertiary Ethers

E. J. Alvarez-Manzaneda*a, R. Chabouna, E. Alvareza, E. Cabreraa, R. Alvarez-Manzanedab, A. Haidoura, J. M. Ramosa
a Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain, +34(958)248089
e-Mail: eamr@ugr.es;
b Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Almería, 04120 Almería, Spain
Weitere Informationen

Publikationsverlauf

Received 14 March 2006
Publikationsdatum:
24. Juli 2006 (online)

Abstract

Treatment of tertiary 1,4- and 1,5-diols with cerium ammonium nitrate at room temperature led to the corresponding tetrahydrofuran and tetrahydropyran derivatives in high yield and stereoselectivity. Utilizing this methodology, manoyl oxide (25a) and a variety of fragrant compounds, such as linalool oxide (8), caparrapi oxide (12), ambrox (14) and other related amber-gris-type odorants have been synthesized; 16 examples are described.

    References and Notes

  • Isolated from the Indian plant Coleus forskohlii. See:
  • 1a Bhat SV. Bajwa BS. Dornauer H. de Souza NJ. Fehlhaber H.-W. Tetrahedron Lett.  1977,  1669 
  • 1b Bhat SV. Bajwa BS. Dornauer H. de Souza NJ. J. Chem. Soc., Perkin Trans. 1  1982,  767 
  • For biological properties of 1, see:
  • 2a Bhat SV. Dohadwalla AN. Bajwa BS. Dadkar NK. Dornauer H. de Souza NJ. J. Med. Chem.  1983,  26:  486 
  • 2b Khandelwal Y. Rajaswari K. Rajagopalan R. Swamy L. Dohadwalla AN. de Souza NJ. Rupp RH. J. Med. Chem.  1988,  31:  1872 
  • 2c Seamon KB. Dady JW. Adv. Cyclic Nucleotide Res.  1986,  20:  1 ; and references cited therein
  • For synthesis of 1, see:
  • 2d Colombo MI. Zinczuk J. Ruveda EA. Tetrahedron  1992,  48:  963 
  • 2e Delpech B. Calvo D. Lett R. Tetrahedron Lett.  1996,  37:  1015 
  • 3 Bhat SV. Prog. Chem. Org. Nat. Prod.  1993,  1 
  • 4 Isolated from Trypterygium wilfordii. See: Duan H. Takaishi Y. Momota H. Ohmoto Y. Taki T. Jia Y. Li D. J. Nat. Prod.  1999,  62:  1522 
  • 5 Westley JW. Polyethers Antibiotics: Naturally Occurring Acid Ionophores   Vol. 1-2:  Marcel Dekker; New York: 1982. 
  • 6a Nakamura T, Oshio T, Shimizu K, and Ozawa T. inventors; JP  90-330570. 
  • 6b Nakamura M. Kunimoto S. Takahashi Y. Naganawa H. Sakane M. Inone S. Ohno T. Takeuchi T. Antimicrob. Agents Chemother.  1992,  36:  492 
  • 6c Kawada M. Sumi S. Umezawa K. Inonye S. Sawa T. Sato H. J. Antibiot.  1992,  45:  556 
  • 6d Otoguro K. Kohana A. Manabe C. Ishiyama A. Li H. Shiomi K. Yamada H. Omura S. J. Antibiot.  2001,  54:  658 
  • 7a Dobler M. Ionophores and Their Structures   John Wiley and Sons; New York: 1981. 
  • 7b Westley JW. Adv. Appl. Microbiol.  1977,  22:  177 
  • 7c Pressman BC. Annu. Rev. Biochem.  1976,  45:  501 
  • 7d Westley JW. Annu. Rep. Med. Chem.  1975,  10:  246 
  • Isolated from the culture broth of a microorganism from the genus Streptomyces. See:
  • 8a Imoto M. Umezawa K. Takahashi Y. Naganawa H. Iitaka Y. Nakamura H. Koizurni Y. Sasaki Y. Hamada M. Sawa T. Takeuchi T. J. Nat. Prod.  1990,  53:  825 
  • 8b Odai H. Shindo K. Odagawa A. Mochizuki J. Hamada M. Takeuchi T. J. Antibiot.  1994,  47:  939 
  • 8c Fuller NO. Morken JP. Org. Lett.  2005,  7:  4867 
  • For the synthesis of cyclic ethers from diols, see:
  • 9a The Chemistry of the Hydroxyl Group, In The Chemistry of Functional Groups   Part 2:  Patai S. Interscience; London: 1971.  p.641-706  
  • 9b Comprehensive Organic Chemistry, The Synthesis and Reactions of Organic Compounds   Vol. 4:  Barton D. Ollis WD. Pergamon Press; Oxford: 1979.  p.875-877  
  • 9c Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry   Vol. 6:  Trost B. Fleming I. Pergamon; London: 1992.  p.22-31  
  • 9d Larock RC. Comprehensive Organic Transformations   John Wiley and Sons; New York: 1999.  p.89-899  
  • 9e Smith MB. March J. Advanced Organic Chemistry   Wiley Interscience; New York: 2001.  p.479-480  
  • For reviews on the use of CAN as oxidant, see:
  • 10a Richardson WH. In Oxidation in Organic Chemistry   Part A:  Wiberg KB. Academic; New York: 1965.  Chap IV.
  • 10b Ho T.-L. In Organic Syntheses by Oxidation with Metal Compounds   Mijs WJ. de Jonge CRHL. Plenum; New York: 1986.  Chap. 11.
  • 10c Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents   Burke SD. Danheiser RL. John Wiley and Sons; Chichester: 1999.  p.77-80  
  • 11 Mellor JM. Parkes R. Millar RW. Tetrahedron Lett.  1997,  38:  8739 
  • 12 Reddy MVR. Malhotra B. Bauker YD. Tetrahedron Lett.  1995,  36:  4861 
  • 13 Ates A. Gautier A. Leroy B. Plancher J.-M. Quesnel Y. Vanherck J.-C. Markó IE. Tetrahedron  2003,  59:  8989 
  • 14a Pan W.-P. Chang F.-R. Wei L.-M. Wu M.-J. Wu Y.-C. Tetrahedron Lett.  2003,  44:  331 
  • 14b Goswani P. Chowdhury P. New. J. Chem.  2000,  24:  955 
  • 15 Hwu JR. Jain M. Tsay S.-C. Hakimalahi GH. Tetrahedron Lett.  1996,  37:  2035 
  • 16 Hwu JR. Jain M. Tasi FY. Tasy S.-C. Balakumar A. Hakimalahi GH. J. Org. Chem.  2000,  65:  5077 
  • 17a Trahanovsky WS. Young MG. Nave PM. Tetrahedron Lett.  1969,  2501 
  • 17b Doyle MP. Zuidema LJ. Bade TR. J. Org. Chem.  1975,  40:  1454 
  • 17c Fujise Y. Kobayashi E. Tsuchida H. Ito S. Heterocycles  1978,  11:  351 
  • 17d Balasubraniam V. Robinson CH. Tetrahedron Lett.  1981,  22:  501 
  • 18a Trahanovsky WS. Cramer J. J. Org. Chem.  1971,  36:  1890 
  • 18b Trahanovsky WS. Fox NS. J. Am. Chem. Soc.  1974,  96:  7968 
  • 18c Ho T.-L. Synthesis  1978,  936 
  • 19a Meyer K. Rocek J. J. Am. Chem. Soc.  1972,  94:  1209 
  • 19b Hunter NR. MacAlpine GA. Liu H.-J. Valenta Z. Can. J. Chem.  1970,  48:  1436 
  • 20 Trahanovsky WS. Flash PJ. Smith LM. J. Am. Chem. Soc.  1969,  91:  5068 
  • 21 Trahanovsky WS. Macaulay DB. J. Org. Chem.  1973,  38:  1497 
  • 22 For a review, see: Nair V. Mathew J. Prabhakaran J. Chem. Soc. Rev.  1997,  127 
  • 23 For a review, see: Nair V. Panicker SB. Nair LG. George TG. Augustine A. Synlett  2003,  156 
  • 24a Torii S. Uneyama K. Isihara M. J. Org. Chem.  1974,  39:  3645 
  • 24b Strikler H. Kovats E. Helv. Chim. Acta  1966,  49:  2055 
  • 25 Nakamura S. Ishihara K. Yamamoto H. J. Am. Chem. Soc.  2000,  122:  8131 ; and references cited therein
  • 26 Barrero AF. Alvarez-Manzaneda EJ. Chahboun R. Paiz MC. Tetrahedron Lett.  1998,  39:  9543 ; and references cited therein
  • 27a Barrero AF. Altarejos J. Alvarez-Manzaneda EJ. Ramos JM. Salido S. Tetrahedron  1993,  49:  6251 
  • 27b Barrero AF. Alvarez-Manzaneda EJ. Altarejos J. Salido S. Ramos JM. Tetrahedron  1993,  49:  10405 
  • 27c Barrero AF. Sánchez JF. Alvarez-Manzaneda EJ. Muñoz Dorado M. Haidour A. Tetrahedron  1994,  50:  6653 
  • 27d Barrero AF. Altarejos J. Alvarez-Manzaneda EJ. Ramos JM. Salido S. J. Org. Chem.  1996,  61:  2215 ; and references cited therein
  • 28 Ohloff G. Vial Ch. Demole E. Enggist P. Giersch W. Jegou E. Carus AJ. Polonsky J. Lederer E. Helv. Chim. Acta  1986,  69:  163 
  • 29 Snowden RL. Eichenberger J.-C. Giersch W. Thommen W. Schulte-Elte KH. Helv. Chim. Acta  1993,  76:  1608 
  • 30 Márquez C. Rodriguez González B. Valverde-López S. An. Quim.  1975,  71:  603 
  • 31 Vlad PF. Ungur ND. Synthesis  1983,  216 
  • 32a Hosking JR. Brant CW. Ber. Dtsch. Chem. Ges.  1935,  68:  37 
  • 32b Giles JA. Schumacher JN. Mims SS. Bernasek E. Tetrahedron  1962,  18:  169 
  • 33 Conner AH. Rowe JW. Phytochemistry  1977,  16:  1777 
  • 34 Coste-Manière IC. Zahra JP. Waegell W. Tetrahedron Lett.  1988,  29:  1017 
35

Typical Experimental Procedure. To a deoxygenated solution of compound (1 mmol) in MeCN (10 mL) was added solid CAN (1.2 mmol) and the mixture was stirred under an argon atmosphere at r.t. for the specified time (Table [1] ). The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed and the residue was diluted with Et2O (20 mL), washed with H2O, brine and dried over anhyd Na2SO4. After removal of the solvent the residue was subjected to column chromatography on silica gel. Elution with 5% Et2O-hexane afforded the pure product.

36

All new compounds were fully characterized spectroscopically and had satisfactory HRMS data.
Selected data:
Compound 23: 1H NMR (400 MHz, CDCl3): δ = 1.28 (s, 3 H), 1.19 (s, 3 H), 0.85 (t, J = 3.8 Hz, 3 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 74.6 (C), 72.9 (C), 58.3 (CH), 56.5 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 37.9 (CH2), 36.9 (C), 35.7 (CH2), 33.4 (CH3), 33.3 (C), 27.3 (CH3), 24.9 (CH3), 21.3 (CH3), 19.9 (CH2), 18.7 (CH2), 15.8 (CH3), 15.4 (CH2), 8.1 (CH3). IR (film): 1638, 1463, 1374, 1278, 1119, 1006, 959, 845 cm-1. MS (EI) m/z (relative intensity) = 292 (3), 263 (22), 245 (100), 223 (5), 177 (18), 137 (34), 123 (23). HRMS (FAB): m/z calcd for C20H36ONa: 315.2664; found: 315.2650.
Compound 29: 1H NMR (400 MHz, CDCl3): δ = 3.90 (d, J = 10.8 Hz, 1 H), 3.72 (d, J = 10.8 Hz, 1 H), 2.06 (s, 3 H), 1.26 (s, 3 H), 1.21 (s, 3 H), 0.84 (s, 3 H), 0.77 (s, 3 H), 0.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.2 (C), 75.2 (C), 72.9 (CH2), 71.8 (C), 57.5 (CH), 56.5 (CH), 43.0 (CH2), 42.2 (CH2), 39.1 (CH2), 36.9 (C), 33.7 (CH2), 33.4 (CH3), 33.3 (C), 25.0 (CH3), 24.8 (CH3), 21.4 (CH3), 21.2 (CH3), 19.9 (CH2), 18.6 (CH2), 15.7 (CH3), 14.9 (CH3). IR (film): 1744, 1464, 1377, 1241, 1122, 1044, 994, 757 cm-1. MS (EI) m/z (relative intensity) = 336 (16), 303(7), 276 (10), 263 (12), 245 (60), 191 (10), 137 (28). HRMS (FAB): m/z calcd for C21H36O3Na: 359.2562; found: 359.2574.

Compound 31: 1H NMR (400 MHz, CDCl3): δ = 3.71 (s, 3 H), 2.13 (ddd, J = 14.0, 8.4, 4.6 Hz, 1 H), 1.85 (dt, J = 12.4, 3.3 Hz, 1 H), 1.79 (m, 2 H), 1.34 (s, 3 H), 1.22 (s, 3 H), 0.88 (dd, J = 12.5, 1.9 Hz, 1 H), 0.83 (s, 3 H), 0.76 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 177.1 (C), 76.1 (C), 74.7 (C), 56.3 (CH), 52.4 (CH3) 52.2 (CH), 42.7 (CH2), 41.9 (CH2), 39.0 (CH2), 37.2 (C), 33.3 (CH3), 33.2 (C), 31.3 (CH2), 28.1 (CH3), 25.6 (CH3), 21.5 (CH3), 19.9 (CH2), 18.5 (CH2), 15.0 (CH3), 14.7 (CH3). IR (film): 1738, 1461, 1378, 1283, 1103, 992, 892, 849, 760 cm-1. MS (EI) m/z (relative intensity) = 323 (22), 307 (18), 263 (19), 245 (68), 196 (8), 137 (36). HRMS (FAB): m/z calcd for C20H34O3Na: 345.2406; found: 345.2412.
Compound 35: 1H NMR (400 MHz, CDCl3): δ = 3.32 (d, J = 10.6 Hz, 1 H), 3.07 (d, J = 10.6 Hz, 1 H), 2.32 (s, 1 H), 1.29 (s, 3 H), 1.16 (s, 3 H), 1.10 (dd, J = 12.6, 2.4 Hz, 1 H), 0.99 (dd, J = 12.2, 1.5 Hz, 1 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 75.5 (C), 73.3 (C), 70.9 (CH2), 58.2 (CH), 56.4 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 36.9 (C), 33.4 (CH3), 33.3 (C), 32.5 (CH2), 25.1 (CH3), 24.5 (CH3), 21.3 (CH3), 19.8 (CH2), 18.6 (CH2), 15.8 (CH3), 15.0 (CH3). IR (film): 3455, 1463, 1377, 1259, 1121, 1052, 960, 755 cm-1. MS (EI) m/z (relative intensity) = 294 (8), 263 (14), 245 (76), 191 (10), 149 (12), 137 (40), 83 (71). HRMS (FAB): m/z calcd for C19H34O2Na: 317.2456; found: 317.2448.