RSS-Feed abonnieren
DOI: 10.1055/s-2006-947356
Cerium(IV) Ammonium Nitrate (CAN): A Very Efficient Reagent for the Synthesis of Tertiary Ethers
Publikationsverlauf
Publikationsdatum:
24. Juli 2006 (online)
Abstract
Treatment of tertiary 1,4- and 1,5-diols with cerium ammonium nitrate at room temperature led to the corresponding tetrahydrofuran and tetrahydropyran derivatives in high yield and stereoselectivity. Utilizing this methodology, manoyl oxide (25a) and a variety of fragrant compounds, such as linalool oxide (8), caparrapi oxide (12), ambrox (14) and other related amber-gris-type odorants have been synthesized; 16 examples are described.
Key words
cyclizations - diols - ethers - natural products - stereoselectivity
- Isolated from the Indian plant Coleus forskohlii. See:
-
1a
Bhat SV.Bajwa BS.Dornauer H.de Souza NJ.Fehlhaber H.-W. Tetrahedron Lett. 1977, 1669 -
1b
Bhat SV.Bajwa BS.Dornauer H.de Souza NJ. J. Chem. Soc., Perkin Trans. 1 1982, 767 - For biological properties of 1, see:
-
2a
Bhat SV.Dohadwalla AN.Bajwa BS.Dadkar NK.Dornauer H.de Souza NJ. J. Med. Chem. 1983, 26: 486 -
2b
Khandelwal Y.Rajaswari K.Rajagopalan R.Swamy L.Dohadwalla AN.de Souza NJ.Rupp RH. J. Med. Chem. 1988, 31: 1872 -
2c
Seamon KB.Dady JW. Adv. Cyclic Nucleotide Res. 1986, 20: 1 ; and references cited therein - For synthesis of 1, see:
-
2d
Colombo MI.Zinczuk J.Ruveda EA. Tetrahedron 1992, 48: 963 -
2e
Delpech B.Calvo D.Lett R. Tetrahedron Lett. 1996, 37: 1015 - 3
Bhat SV. Prog. Chem. Org. Nat. Prod. 1993, 1 - 4 Isolated from Trypterygium wilfordii. See:
Duan H.Takaishi Y.Momota H.Ohmoto Y.Taki T.Jia Y.Li D. J. Nat. Prod. 1999, 62: 1522 - 5
Westley JW. Polyethers Antibiotics: Naturally Occurring Acid Ionophores Vol. 1-2: Marcel Dekker; New York: 1982. -
6a
Nakamura T,Oshio T,Shimizu K, andOzawa T. inventors; JP 90-330570. -
6b
Nakamura M.Kunimoto S.Takahashi Y.Naganawa H.Sakane M.Inone S.Ohno T.Takeuchi T. Antimicrob. Agents Chemother. 1992, 36: 492 -
6c
Kawada M.Sumi S.Umezawa K.Inonye S.Sawa T.Sato H. J. Antibiot. 1992, 45: 556 -
6d
Otoguro K.Kohana A.Manabe C.Ishiyama A.Li H.Shiomi K.Yamada H.Omura S. J. Antibiot. 2001, 54: 658 -
7a
Dobler M. Ionophores and Their Structures John Wiley and Sons; New York: 1981. -
7b
Westley JW. Adv. Appl. Microbiol. 1977, 22: 177 -
7c
Pressman BC. Annu. Rev. Biochem. 1976, 45: 501 -
7d
Westley JW. Annu. Rep. Med. Chem. 1975, 10: 246 - Isolated from the culture broth of a microorganism from the genus Streptomyces. See:
-
8a
Imoto M.Umezawa K.Takahashi Y.Naganawa H.Iitaka Y.Nakamura H.Koizurni Y.Sasaki Y.Hamada M.Sawa T.Takeuchi T. J. Nat. Prod. 1990, 53: 825 -
8b
Odai H.Shindo K.Odagawa A.Mochizuki J.Hamada M.Takeuchi T. J. Antibiot. 1994, 47: 939 -
8c
Fuller NO.Morken JP. Org. Lett. 2005, 7: 4867 - For the synthesis of cyclic ethers from diols, see:
-
9a
The Chemistry of the Hydroxyl Group, In The Chemistry of Functional Groups
Part 2:
Patai S. Interscience; London: 1971. p.641-706 -
9b
Comprehensive Organic Chemistry, The Synthesis and Reactions of Organic Compounds
Vol. 4:
Barton D.Ollis WD. Pergamon Press; Oxford: 1979. p.875-877 -
9c
Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry
Vol. 6:
Trost B.Fleming I. Pergamon; London: 1992. p.22-31 -
9d
Larock RC. Comprehensive Organic Transformations John Wiley and Sons; New York: 1999. p.89-899 -
9e
Smith MB.March J. Advanced Organic Chemistry Wiley Interscience; New York: 2001. p.479-480 - For reviews on the use of CAN as oxidant, see:
-
10a
Richardson WH. In Oxidation in Organic Chemistry Part A:Wiberg KB. Academic; New York: 1965. Chap IV. -
10b
Ho T.-L. In Organic Syntheses by Oxidation with Metal CompoundsMijs WJ.de Jonge CRHL. Plenum; New York: 1986. Chap. 11. -
10c
Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents
Burke SD.Danheiser RL. John Wiley and Sons; Chichester: 1999. p.77-80 - 11
Mellor JM.Parkes R.Millar RW. Tetrahedron Lett. 1997, 38: 8739 - 12
Reddy MVR.Malhotra B.Bauker YD. Tetrahedron Lett. 1995, 36: 4861 - 13
Ates A.Gautier A.Leroy B.Plancher J.-M.Quesnel Y.Vanherck J.-C.Markó IE. Tetrahedron 2003, 59: 8989 -
14a
Pan W.-P.Chang F.-R.Wei L.-M.Wu M.-J.Wu Y.-C. Tetrahedron Lett. 2003, 44: 331 -
14b
Goswani P.Chowdhury P. New. J. Chem. 2000, 24: 955 - 15
Hwu JR.Jain M.Tsay S.-C.Hakimalahi GH. Tetrahedron Lett. 1996, 37: 2035 - 16
Hwu JR.Jain M.Tasi FY.Tasy S.-C.Balakumar A.Hakimalahi GH. J. Org. Chem. 2000, 65: 5077 -
17a
Trahanovsky WS.Young MG.Nave PM. Tetrahedron Lett. 1969, 2501 -
17b
Doyle MP.Zuidema LJ.Bade TR. J. Org. Chem. 1975, 40: 1454 -
17c
Fujise Y.Kobayashi E.Tsuchida H.Ito S. Heterocycles 1978, 11: 351 -
17d
Balasubraniam V.Robinson CH. Tetrahedron Lett. 1981, 22: 501 -
18a
Trahanovsky WS.Cramer J. J. Org. Chem. 1971, 36: 1890 -
18b
Trahanovsky WS.Fox NS. J. Am. Chem. Soc. 1974, 96: 7968 -
18c
Ho T.-L. Synthesis 1978, 936 -
19a
Meyer K.Rocek J. J. Am. Chem. Soc. 1972, 94: 1209 -
19b
Hunter NR.MacAlpine GA.Liu H.-J.Valenta Z. Can. J. Chem. 1970, 48: 1436 - 20
Trahanovsky WS.Flash PJ.Smith LM. J. Am. Chem. Soc. 1969, 91: 5068 - 21
Trahanovsky WS.Macaulay DB. J. Org. Chem. 1973, 38: 1497 - 22 For a review, see:
Nair V.Mathew J.Prabhakaran J. Chem. Soc. Rev. 1997, 127 - 23 For a review, see:
Nair V.Panicker SB.Nair LG.George TG.Augustine A. Synlett 2003, 156 -
24a
Torii S.Uneyama K.Isihara M. J. Org. Chem. 1974, 39: 3645 -
24b
Strikler H.Kovats E. Helv. Chim. Acta 1966, 49: 2055 - 25
Nakamura S.Ishihara K.Yamamoto H. J. Am. Chem. Soc. 2000, 122: 8131 ; and references cited therein - 26
Barrero AF.Alvarez-Manzaneda EJ.Chahboun R.Paiz MC. Tetrahedron Lett. 1998, 39: 9543 ; and references cited therein -
27a
Barrero AF.Altarejos J.Alvarez-Manzaneda EJ.Ramos JM.Salido S. Tetrahedron 1993, 49: 6251 -
27b
Barrero AF.Alvarez-Manzaneda EJ.Altarejos J.Salido S.Ramos JM. Tetrahedron 1993, 49: 10405 -
27c
Barrero AF.Sánchez JF.Alvarez-Manzaneda EJ.Muñoz Dorado M.Haidour A. Tetrahedron 1994, 50: 6653 -
27d
Barrero AF.Altarejos J.Alvarez-Manzaneda EJ.Ramos JM.Salido S. J. Org. Chem. 1996, 61: 2215 ; and references cited therein - 28
Ohloff G.Vial Ch.Demole E.Enggist P.Giersch W.Jegou E.Carus AJ.Polonsky J.Lederer E. Helv. Chim. Acta 1986, 69: 163 - 29
Snowden RL.Eichenberger J.-C.Giersch W.Thommen W.Schulte-Elte KH. Helv. Chim. Acta 1993, 76: 1608 - 30
Márquez C.Rodriguez González B.Valverde-López S. An. Quim. 1975, 71: 603 - 31
Vlad PF.Ungur ND. Synthesis 1983, 216 -
32a
Hosking JR.Brant CW. Ber. Dtsch. Chem. Ges. 1935, 68: 37 -
32b
Giles JA.Schumacher JN.Mims SS.Bernasek E. Tetrahedron 1962, 18: 169 - 33
Conner AH.Rowe JW. Phytochemistry 1977, 16: 1777 - 34
Coste-Manière IC.Zahra JP.Waegell W. Tetrahedron Lett. 1988, 29: 1017
References and Notes
Typical Experimental Procedure. To a deoxygenated solution of compound (1 mmol) in MeCN (10 mL) was added solid CAN (1.2 mmol) and the mixture was stirred under an argon atmosphere at r.t. for the specified time (Table [1] ). The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed and the residue was diluted with Et2O (20 mL), washed with H2O, brine and dried over anhyd Na2SO4. After removal of the solvent the residue was subjected to column chromatography on silica gel. Elution with 5% Et2O-hexane afforded the pure product.
36All new compounds were fully characterized spectroscopically and had satisfactory HRMS data.
Selected data:
Compound 23: 1H NMR (400 MHz, CDCl3): δ = 1.28 (s, 3 H), 1.19 (s, 3 H), 0.85 (t, J = 3.8 Hz, 3 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 74.6 (C), 72.9 (C), 58.3 (CH), 56.5 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 37.9 (CH2), 36.9 (C), 35.7 (CH2), 33.4 (CH3), 33.3 (C), 27.3 (CH3), 24.9 (CH3), 21.3 (CH3), 19.9 (CH2), 18.7 (CH2), 15.8 (CH3), 15.4 (CH2), 8.1 (CH3). IR (film): 1638, 1463, 1374, 1278, 1119, 1006, 959, 845 cm-1. MS (EI) m/z (relative intensity) = 292 (3), 263 (22), 245 (100), 223 (5), 177 (18), 137 (34), 123 (23). HRMS (FAB): m/z calcd for C20H36ONa: 315.2664; found: 315.2650.
Compound 29: 1H NMR (400 MHz, CDCl3): δ = 3.90 (d, J = 10.8 Hz, 1 H), 3.72 (d, J = 10.8 Hz, 1 H), 2.06 (s, 3 H), 1.26 (s, 3 H), 1.21 (s, 3 H), 0.84 (s, 3 H), 0.77 (s, 3 H), 0.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.2 (C), 75.2 (C), 72.9 (CH2), 71.8 (C), 57.5 (CH), 56.5 (CH), 43.0 (CH2), 42.2 (CH2), 39.1 (CH2), 36.9 (C), 33.7 (CH2), 33.4 (CH3), 33.3 (C), 25.0 (CH3), 24.8 (CH3), 21.4 (CH3), 21.2 (CH3), 19.9 (CH2), 18.6 (CH2), 15.7 (CH3), 14.9 (CH3). IR (film): 1744, 1464, 1377, 1241, 1122, 1044, 994, 757 cm-1. MS (EI) m/z (relative intensity) = 336 (16), 303(7), 276 (10), 263 (12), 245 (60), 191 (10), 137 (28). HRMS (FAB): m/z calcd for C21H36O3Na: 359.2562; found: 359.2574.
Compound 31: 1H NMR (400 MHz, CDCl3): δ = 3.71 (s, 3 H), 2.13 (ddd, J = 14.0, 8.4, 4.6 Hz, 1 H), 1.85 (dt, J = 12.4, 3.3 Hz, 1 H), 1.79 (m, 2 H), 1.34 (s, 3 H), 1.22 (s, 3 H), 0.88 (dd, J = 12.5, 1.9 Hz, 1 H), 0.83 (s, 3 H), 0.76 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 177.1 (C), 76.1 (C), 74.7 (C), 56.3 (CH), 52.4 (CH3) 52.2 (CH), 42.7 (CH2), 41.9 (CH2), 39.0 (CH2), 37.2 (C), 33.3 (CH3), 33.2 (C), 31.3 (CH2), 28.1 (CH3), 25.6 (CH3), 21.5 (CH3), 19.9 (CH2), 18.5 (CH2), 15.0 (CH3), 14.7 (CH3). IR (film): 1738, 1461, 1378, 1283, 1103, 992, 892, 849, 760 cm-1. MS (EI) m/z (relative intensity) = 323 (22), 307 (18), 263 (19), 245 (68), 196 (8), 137 (36). HRMS (FAB): m/z calcd for C20H34O3Na: 345.2406; found: 345.2412.
Compound 35: 1H NMR (400 MHz, CDCl3): δ = 3.32 (d, J = 10.6 Hz, 1 H), 3.07 (d, J = 10.6 Hz, 1 H), 2.32 (s, 1 H), 1.29 (s, 3 H), 1.16 (s, 3 H), 1.10 (dd, J = 12.6, 2.4 Hz, 1 H), 0.99 (dd, J = 12.2, 1.5 Hz, 1 H), 0.85 (s, 3 H), 0.79 (s, 3 H), 0.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 75.5 (C), 73.3 (C), 70.9 (CH2), 58.2 (CH), 56.4 (CH), 43.1 (CH2), 42.2 (CH2), 39.2 (CH2), 36.9 (C), 33.4 (CH3), 33.3 (C), 32.5 (CH2), 25.1 (CH3), 24.5 (CH3), 21.3 (CH3), 19.8 (CH2), 18.6 (CH2), 15.8 (CH3), 15.0 (CH3). IR (film): 3455, 1463, 1377, 1259, 1121, 1052, 960, 755 cm-1. MS (EI) m/z (relative intensity) = 294 (8), 263 (14), 245 (76), 191 (10), 149 (12), 137 (40), 83 (71). HRMS (FAB): m/z calcd for C19H34O2Na: 317.2456; found: 317.2448.