RSS-Feed abonnieren
DOI: 10.1055/s-2006-947335
Biomimetic Synthesis of trans,syn,trans-Fused Polycyclic Ethers
Publikationsverlauf
Publikationsdatum:
24. Juli 2006 (online)
Abstract
This account describes potentially biomimetic tandem regio- and stereoselective oxacyclizations of acyclic polyepoxide substrates to provide trans,syn,trans-fused polycyclic ether structures, as found in marine natural products exemplified by brevetoxins, ciguatoxins, and maitotoxin.
1 Introduction: Occurrence and Biological Activity of Fused Polycyclic Ether Natural Products
2 Biosynthetic Origins of Fused Polycyclic Ether Natural Products
3 Initial Studies Directed towards Tandem endo-Regioselective Cyclizations to Fused Polycyclic Ether Structures
4 Conversion of Terpene-Derived Polyepoxides to trans,syn,trans-Fused Polyoxepanes
5 Synthesis of trans,syn,trans-Polypyran from 1,4,7-Triepoxide
6 Substituent Effects on endo-Regioselective Polycyclizations
7 Future Directions for Exploration and Discovery
Key words
biomimetic synthesis - fused polycyclic ethers - polyepoxides - regioselectivity - stereoselectivity
- 1
Baden DG. Int. Rev. Cytol. 1983, 82: 99 - 2
Nagi H.Satake M.Murata M.Yasumoto T. In Toxic Marine PhytoplanktonGraneli E.Sunderström B.Edler L.Anderson DM. Elsevier; New York: 1990. p.385-390 - 4
Lasker R.Smith FGW. U. S. Fish Wildl. Serv. Fish Bull. 1954, 55-173 - 5
Davis CG. Bot. Gaz. (Chicago) 1947, 109: 358 - 6
Landsberg JH.Steidinger K. In Harmful MicroalgaeReguera B.Blanco J.Fernandez ML.Wyatt T. IOC of UNESCO and Xunta de Galicia; Spain: 1997. p.97-100 - 7
Poli MA.Musser SM.Dickey RW.Eilers PP.Hall S. Toxicon 2000, 38: 981 -
8a For general symptoms, see:
Morris P.Campbell DS.Taylor TJ.Freeman JI. Am. J. Public Health 1996, 81: 471 -
8b For neurological symptoms, see:
Baden DG.Fleming LE.Bean JA. In Handbook for Clinical Neurology: Intoxication of the Nervous System Part H. Natural Toxinsde Wolf FA. Elsevier; Amsterdam: 1995. p.141-175 -
9a
Abraham WM.Bourdelais AJ.Sabater JR.Ahmed A.Lee TA.Serebriakov I.Baden DG. Am. J. Respir. Crit. Care Med. 2005, 171: 26 -
9b For a review of the human health effects of Florida red tide, see:
Kirkpatrick B.Fleming LE.Squicciarini D.Backer LC.Clark R.Abraham W.Benson J.Cheng YS. Harmful Algae 2004, 3: 99 - 10
Spike JJ.Ray SM.Aldrich DV.Nash JB. Toxicon 1968, 5: 171 - 11
Lin Y.-Y.Risk M.Ray SM.Van Engen D.Clardy J.Golik J.James JC.Nakanishi K. J. Am. Chem. Soc. 1981, 103: 6773 - 12 The toxin nomenclature was standardized by Shimizu during the period when K. brevis was classified as P. brevis:
Shimizu Y. Pure Appl. Chem. 1982, 54: 1973 -
13a PbTx-1 (4):
Shimizu Y.Chou H.-N.Bando H.Van Duyne G.Clardy J. J. Am. Chem. Soc. 1986, 108: 514 -
13b PbTx-7 (5):
Baden DG. FASEB J. 1989, 3: 1807 -
14a PbTx-3 (2):
Chou H.-N.Shimizu Y. Tetrahedron Lett. 1982, 23: 5521 -
14b PbTx-6 (3):
Chou H.-N.Shimizu Y.Van Duyne G.Clardy J. Tetrahedron Lett. 1985, 26: 2865 - 15 The 13C NMR spectrum of PbTx-1 (4) was assigned only after a modified HOHAHA heteronuclear NMR experiment was developed:
Zagorski MG.Nakanishi K.Qin G.-W.Lee MS. J. Org. Chem. 1988, 53: 4158 - 16
Baden DG.Adams DJ. In Seafood Toxicity: Mode of Action, Pharmacology and PhysiologyBotana L. Marcel Dekker; New York: 1999. p.505-532 - 17
Huang JMC.Wu CH.Baden DG. J. Pharmacol. Exp. Ther. 1984, 22: 291 - 18
Krishna Prasad AV.Shimizu Y. J. Am. Chem. Soc. 1989, 111: 6476 -
19a
Bourdelais AJ.Campbell S.Jacocks H.Nafar J.Wright J.Carsi J.Baden DG. Cell. Mol. Neurobiol. 2004, 24: 553 -
19b
Bourdelais AJ.Jacocks HM.Wright JLC.Bigwarfe PM.Baden DG. J. Nat. Prod. 2005, 68: 2 -
20a
Murata M.Legrand AM.Ishibashi Y.Yasumoto T. J. Am. Chem. Soc. 1989, 111: 8929 -
20b
Murata M.Legrand AM.Ishibashi Y.Fukui M.Yasumoto T. J. Am. Chem. Soc. 1990, 112: 4380 - 21
Satake M.Murata M.Yasumoto T. J. Am. Chem. Soc. 1993, 115: 361 -
22a
Murata M.Kumagai M.Lee JS.Yasumoto T. Tetrahedron Lett. 1987, 28: 5869 -
22b
Satake M.Terasawa K.Kadowaki Y.Yasumoto T. Tetrahedron Lett. 1996, 37: 5955 -
22c
Takahashi H.Kusumi T.Kan Y.Satake M.Yasumoto T. Tetrahedron Lett. 1996, 37: 7087 -
23a
Yasumoto T.Bagnis R.Vernoux JP. Bull. Jpn. Soc. Sci. Fish. 1976, 42: 359 -
23b
Takahashi M.Ohizumi Y.Yasumoto T. J. Biol. Chem. 1982, 257: 7287 -
24a
Murata M.Iwashita T.Yokoyama A.Sasaki M.Yasumoto T. J. Am. Chem. Soc. 1992, 114: 6594 -
24b
Murata M.Naoki H.Iwashita T.Matsunaga S.Sasaki M.Yokoyama A.Yasumoto T. J. Am. Chem. Soc. 1993, 115: 2060 -
24c
Sasaki M.Nonomura T.Murata M.Tachibana K. Tetrahedron Lett. 1994, 35: 5023 -
24d
Murata M.Naoki H.Matsunaga S.Satake M.Yasumoto T. J. Am. Chem. Soc. 1994, 116: 7098 -
24e
Sasaki M.Matsumori N.Murata M.Tachibana K.Yasumoto T. Tetrahedron Lett. 1995, 36: 9007 -
24f
Sasaki M.Nonomura T.Murata M.Tachibana K. Tetrahedron Lett. 1995, 36: 9011 -
24g
Satake M.Ishida S.Yasumoto T.Murata M.Utsumi H.Hinomoto T. J. Am. Chem. Soc. 1995, 117: 7019 -
24h
Matsumori N.Nonomura T.Sasaki M.Murata M.Tachibana K.Satake M.Yasumoto T. Tetrahedron Lett. 1996, 38: 1269 -
24i
Zheng W.DeMattei JA.Wu J.-P.Duan JJ.-W.Cook LR.Oinuma H.Kishi Y. J. Am. Chem. Soc. 1996, 118: 7946 -
24j
Cook LR.Oinuma H.Semones MA.Kishi Y. J. Am. Chem. Soc. 1997, 119: 7928 -
25a
Lee MS.Repeta DJ.Nakanishi K. J. Am. Chem. Soc. 1986, 108: 7855 -
25b For a full account, see:
Lee MS.Qin G.-W.Nakanishi K.Zagorski MG. J. Am. Chem. Soc. 1989, 111: 6234 -
26a
Chou H.-N.Shimizu Y. J. Am. Chem. Soc. 1987, 109: 2184 -
26b
Shimizu Y. In Natural Toxins: Animal, Plant and MicrobialHarris JB. Clarendon Press; Oxford: 1986. p.123 - 27
Stryer L. Citric Acid Cycle, In Biochemistry 4th ed.: W. H. Freeman and Company; New York: 1997. p.509-528 - 28
Kingston DGI.Kolpak MX. J. Am. Chem. Soc. 1980, 102: 5964 - 29
Shimizu Y.Wrensford G. In Toxic Phytoplankton Blooms in the SeaSmayda JJ.Shimizu Y. Elsevier; New York: 1993. p.919-923 - 30
Cane DE.Celmer WD.Westley JW. J. Am. Chem. Soc. 1983, 105: 3954 - 31
Nakanishi K. Toxicon 1985, 23: 473 - 32
Nicolaou KC. Angew. Chem., Int. Ed. Engl. 1996, 35: 588 -
33a
Sharpless KB.Michaelson RC. J. Am. Chem. Soc. 1973, 95: 6136 -
33b
Tanaka S.Yamamoto H.Nozaki H.Sharpless KB.Michaelson RC.Cutting JD. J. Am. Chem. Soc. 1974, 96: 5254 -
33c
Nakata T.Schmid G.Vranesic B.Okigawa M.Smith-Palmer T.Kishi Y. J. Am. Chem. Soc. 1978, 100: 2933 -
33d
Hashimoto M.Harigaya H.Yanagiya M.Shirahama H. J. Org. Chem. 1991, 56: 2299 -
33e
Mihelich ED.Daniels K.Eickhoff DJ. J. Am. Chem. Soc. 1981, 103: 7690 -
34a
Katsuki T.Sharpless KB. J. Am. Chem. Soc. 1980, 102: 5974 -
34b
Gao Y.Hanson RM.Klunder JM.Ko SY.Masamune H.Sharpless KB. J. Am. Chem. Soc. 1987, 109: 5765 - 35
Coxon JM.Hartshorn MP.Swallow WH. Aust. J. Chem. 1973, 26: 2521 - 36
Janda KD.Shevlin CG.Lerner RA. J. Am. Chem. Soc. 1995, 117: 2659 - 37
Mukai C.Yamaguchi S.Sugimoto Y.Miyakoshi N.Kasamatsu E.Hanaoka M. J. Org. Chem. 2000, 65: 6761 -
38a
Nicolaou KC.Prasad CVC.Somers PK.Hwang C.-K. J. Am. Chem. Soc. 1989, 111: 5330 -
38b
Nicolaou KC.Prasad CVC.Somers PK.Hwang C.-K. J. Am. Chem. Soc. 1989, 111: 5335 -
38c
Matsukura H.Morimoto M.Koshino H.Nakata T. Tetrahedron Lett. 1997, 38: 5545 - 39
Fujiwara K.Mishima H.Amano A.Tokiwano T.Murai A. Tetrahedron Lett. 1998, 39: 393 - 40
Tokiwano T.Fujiwara K.Murai A. Synlett 2000, 335 -
41a
Tu Y.Wang Z.-X.Shi Y. J. Am. Chem. Soc. 1996, 108: 9806 -
41b
Wang X.Tu Y.Frohn M.Zhang J.Shi Y. J. Am. Chem. Soc. 1997, 119: 11224 -
41c
Wang Z.-X.Tu Y.Frohn M.Shi Y. J. Org. Chem. 1997, 62: 2328 -
41d
Wang Z.-X.Shi Y. J. Org. Chem. 1998, 63: 3099 -
41e
Shi Y. Acc. Chem. Res. 2004, 37: 488 - 42
McDonald FE.Wang X.Do B.Hardcastle KI. Org. Lett. 2000, 2: 2917 -
43a
McDonald FE.Bravo F.Wang X.Wei X.Toganoh M.Rodriguez JR.Do B.Neiwert WA.Hardcastle KI. J. Org. Chem. 2002, 67: 2515 -
43b
Bravo F.McDonald FE.Neiwert WA.Hardcastle KI. Org. Lett. 2004, 6: 4487 - 44 The corresponding hydrocarbon bicyclo[3.1.0]hexane has been experimentally determined to be 3.9 kcal/mol more strained than bicyclo[4.1.0]heptane. See:
Chang S.-J.McNally D.Shary-Tehrany S.Hickey SMJ.Boyd RH. J. Am. Chem. Soc. 1970, 92: 3109 -
45a
Still WC.Romero AG. J. Am. Chem. Soc. 1986, 108: 2105 -
45b
Schreiber SL.Sammakia T.Hulin B.Schulte G. J. Am. Chem. Soc. 1986, 108: 2106 -
45c
Paterson I.Tillyer RD.Smaill JB. Tetrahedron Lett. 1993, 34: 7137 -
45d
Evans DA.Ratz AM.Huff BE.Sheppard GS. J. Am. Chem. Soc. 1995, 117: 3448 - 46
Bravo F.McDonald FE.Neiwert WA.Do B.Hardcastle KI. Org. Lett. 2003, 5: 2123 -
47a
Adiwidjaja G.Florke H.Kirschning A.Schaumann E. Tetrahedron Lett. 1995, 36: 8771 -
47b
Heffron TP.Jamison TF. Org. Lett. 2003, 5: 2339 -
47c
Simpson GL.Heffron TP.Marino E.Jamison TF. J. Am. Chem. Soc. 2006, 128: 1056 -
48a
Valentine JC.McDonald FE.Neiwert WA.Hardcastle KI. J. Am. Chem. Soc. 2005, 127: 4586 -
48b
Valentine JC. PhD Thesis Emory University; USA: 2005. -
49a For an excellent review of α,β-epoxysilane chemistry, see:
Hudrlik PF.Hudrlik AM. α,β-Epoxysilanes, In Advances in Silicon Chemistry Vol. 2:Larson GL. JAI Press; Greenwich CT: 1993. p.1-89 -
49b
Hudrlik PF.Misra RN.Withers GP.Hudrlik AM.Rona RJ.Arcoleo JP. Tetrahedron Lett. 1976, 17: 1453 -
50a
Brook AG. Acc. Chem. Res. 1974, 7: 77 -
50b
Brook AG.Bassindale AR. In Rearrangements of Ground Excited States Vol. 2:de Mayo P. Academic Press; New York: 1980. p.149-227 -
51a
Mirsadeghi S.Rickborn B. J. Org. Chem. 1987, 52: 787 -
51b
Hudrlik PF.Holmes PE.Hudrlik AM. Tetrahedron Lett. 1988, 29: 6395 -
51c
Hudrlik PF.Hudrlik AM.Kulkarni AK. J. Am. Chem. Soc. 1982, 104: 6809 -
51d
Seki M.Kondo K.Kuroka T.Yamanaka T.Iwasaki T. Synlett 1995, 609 -
51e
Pilcher AS.DeShong P. J. Org. Chem. 1993, 58: 5130 -
51f
Smitrovich JH.Woerpel KA. J. Org. Chem. 1996, 61: 6044 - The trans-disubstituted alkene precursors to polyepoxide substrates 78, 79, 81, and 82 were produced by methods developed largely by W. S. Johnson’s laboratory in the course of their inspirational work on biomimetic polyene carbacyclizations:
-
52a
Johnson WS.Telfer SJ.Cheng S.Schubert U. J. Am. Chem. Soc. 1987, 109: 2517 -
52b
Johnson WS.Buchanan RA.Bartlett WR.Tham FS.Kullnig RK. J. Am. Chem. Soc. 1993, 115: 504 -
52c
Johnson WS.Plummer MS.Reddy SP.Bartlett WR. J. Am. Chem. Soc. 1993, 115: 515 -
52d Review:
de la Torre MC.Sierra MA. Angew. Chem. Int. Ed. 2004, 43: 160
References and Notes
The dinoflagellate implicated in red tide blooms in the Gulf of Mexico was first taxonomically classified as Gymnodinium breve, later as Ptychodiscus brevis and most recently as Karenia brevis. To avoid confusion, Karenia brevis will be used exclusively in this review.