RSS-Feed abonnieren
DOI: 10.1055/s-2006-944209
Double Coupling Reactions of 3,4-Bis(stannyl)furanone: Facile Preparation of Diaryl- and Dibenzylfuranones
Publikationsverlauf
Publikationsdatum:
04. Juli 2006 (online)
Abstract
The palladium-catalyzed cross-coupling reaction of 3,4-bis(tributylstannyl)furan-2(5H)-one using chelating ligand or polar solvent gives mixtures of single and double coupled products, even when one equivalent of halide coupling partner is used. After optimization, the double coupling reaction was shown to be general, with the use of two equivalents of aryl iodides giving 3,4-disubstituted furanones, The reaction using benzyl bromides proceeds at lower temperatures than the corresponding coupling using aryl iodides, giving dibenzylfuranones. The methodology has been exemplified in a synthesis of (±)-hinokinin.
Key words
furanon - butenolide - Stille coupling - diarylfuranone - lignan - hinokinin
-
1a
Richecœur AME.Sweeney J. Tetrahedron 2000, 56: 389 -
1b
Hollingworth GJ.Richecœur AME.Sweeney J. J. Chem. Soc., Perkin Trans. 1 1996, 2833 -
1c
Hollingworth GJ.Perkins G.Sweeney J. J. Chem. Soc., Perkin Trans. 1 1996, 1913 - 2
Carter NB.Mabon R.Richecœur AME.Sweeney JB. Tetrahedron 2002, 58: 9117 - For other routes to 3,4-disubstituted furanones, see, for instance:
-
3a
Rossi R.Bellina F.Raugei E. Synlett 2000, 1749 -
3b
Forgione P.Wilson PD.Fallis AG. Tetrahedron Lett. 2000, 41: 17 -
3c
Duboudin JG.Jousseaume B. J. Organomet. Chem. 1979, 168: 233 -
3d
Mornet R.Gouin L. Bull. Soc. Chim. Fr. 1977, 737 -
3e
Crisp GT.Meyer AG. J. Org. Chem. 1992, 57: 6972 -
3f
Wakharkar RD.Deshpande VH.Landge AB.Upadhye BK. Synth. Commun. 1987, 17: 1513 -
3g
Okazaki R.Negishi Y.Inamoto N. J. Org. Chem. 1989, 49: 3819 -
3h
Delaunay J.Orliac-Le Moing A.Simonet J. Tetrahedron 1988, 44: 3819 -
3i
Boukouvalas J.Maltais F.Lachance N. Tetrahedron Lett. 1994, 35: 7897 ; and references therein - See, for instance:
-
6a
Higuchi K.Sawada K.Nambu H.Shogaki T.Kita Y. Org. Lett. 2003, 5: 3703 -
6b
Wang L.Pan Y.Jiang X.Hu H. Tetrahedron Lett. 2000, 41: 725 -
6c
Kumar P. Org. Prep. Proced. Int. 1997, 29: 477 -
6d
Pan Y.Zhang Z.Hu H. Synthesis 1995, 245 -
6e
Pan Y.Zang Z.Hu H. Synth. Commun. 1992, 22: 2019 -
6f
Hashem MA.Weyerstahl P. Tetrahedron 1984, 40: 2003 -
6g
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320 - For racemic and asymmetric syntheses of hinokinin, see:
-
8a
Morimoto T.Nagai H.Achiwa K. Synth. Commun. 2005, 35: 857 -
8b
da Silva R.de Souza GHB.da Silva AA.de Souza VA.Pereira AC.Royo VD.Silva MLAE.Donate PM.Araujo ALSD.Carvalho JCT.Bastos JK. Bioorg. Med. Chem. Lett. 2005, 15: 1033 -
8c
Bennett DJ.Pickering PL.Simpkins NS. Chem. Commun. 2004, 1392 -
8d
Xia YM.Liang QR.Wang XL.Cao XP.Pan XF. Chin. J. Chem. 2003, 21: 1540 -
8e
Enders D.Lausberg V.Del Signore G.Berner OM. Synthesis 2002, 515 -
8f
Brinksma J.van der Deen H.van Oeveren A.Feringa BL. J. Chem. Soc., Perkin Trans. 1 1998, 4159 ; and references therein -
10a
Leutenegger U.Madin A.Pfaltz A. Angew. Chem., Int. Ed. Engl. 1989, 28: 60 -
10b
von Matt P.Pfaltz A. Tetrahedron: Asymmetry 1991, 2: 691 -
10c
Moritani Y.Appella DH.Jurkauskas V.Buchwald SL. J. Am. Chem. Soc. 2000, 122: 6797 -
10d
Yun J.Buchwald SL. Org. Lett. 2001, 3: 1129 -
10e
Jurkauskas V.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 2892 -
10f
Appella DH.Moritani Y.Shintani R.Ferreira EM.Buchwald SL. J. Am. Chem. Soc. 1999, 121: 9473
References and Notes
It is not possible to directly discern the yields of the individual coupling reactions: assuming a maximum yield of 100% for the second coupling (normally a more efficient process, see ref. 2), the maximum possible yield for the first step is 51%. Our original observations in monocoupling of 1 with PhI gave 2 (Ar = Ph) in a yield of 51%.
5
Representative Experimental Procedure.
To a flame-dried flask (under argon atmosphere) charged with PdCl2(PPh3)2 (2 mol%), CuI (8 mol%), AsPh3 (8 mol%) was added 3,4-bis(tributylstannyl)furan-2(5H)-one (500 mg, 0.76 mmol) as a solution in dry, deoxygenated DMF, followed by iodobenzene (310 mg, 1.52 mmol), also added dropwise as a solution in DMF (2.0 mL). After reaction was complete (24 h) the mixture was diluted with aq KF (1 M, 10.0 mL) and extracted with Et2O (3 × 30.0 mL), washed with H2O (3 × 15.0 mL) and brine (3 × 15.0 mL). Solvent was removed under reduced pressure and the crude product was purified via flash chromatography (silica gel, 3:2 PE-Et2O; R
f
= 0.24). Recrystallization (CH2Cl2-PE) gave 3,4-diphenylfuran-2(5H)-one as pale yellow crystals (56%, 101 mg); mp 104-105 °C (CH2Cl2-PE). IR (CHCl3): 1751, 1646, 1489 cm-1. 1H NMR (250 MHz, CDCl3): δ = 5.10 (2 H, s), 7.23-7.33 (10 H, m). 13C NMR (60 MHz, CDCl3): δ = 71.0 (OCH2), 126.6, 127.9, 129.2, 129.3, 129.4, 129.7, 130.6, 131.0, 131.2, 156.6, 173.9. MS (CI, NH3): m/z calcd for C16H13O2: 237.0916. Found [MH]+: 237.0915; m/z (%) = 179.0 (15).
Representative Experimental Procedure.
To a flame-dried flask (under an argon atmosphere) charged with benzyl bromide (226 mg, 1.33 mmol), PdCl2(PPh3)2 (5 mol%), AsPh3 (8 mol%) and CuI (8 mol%) was added THF (5.0 mL) and the mixture warmed to 50 °C. 3,4-Bis(tributyl-stannyl)furan-2(5H)-one (450 mg, 0.66 mmol) in THF (5.0 mL) was added dropwise via syringe. After reaction was complete the mixture was concentrated under reduced pressure. Purification via flash chromatography (silica gel, PE-Et2O 1:1; R
f
= 0.50) gave 3,4-dibenzylfuranone as a clear colorless oil (78 mg, 45%). IR (CHCl3): 3063, 1754, 1668 cm-1. 1H NMR (250 MHz, CDCl3): δ = 3.71 (2 H, s), 3.74 (2 H, s), 4.51 (2 H, s), 6.99-7.02 (2 H, dd, J = 7.0, 2.0 Hz), 7.22-7.29 (8 H, m). 13C NMR (60 MHz, CDCl3): δ = 30.0, 34.0, 71.7, 127.0, 127.2, 127.7, 129.0, 129.1, 129.2, 129.5, 136.3, 138.5, 160.3, 175.2. MS (CI, NH3): m/z calcd for C18H16O2: 265.1231. Found [MH]+: 265.1221; m/z (%) = 219 (20), 91 (25).
Data for (±)-Hinokinin.
IR (CHCl3): 1769, 1495, 1245, 1033 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.45-2.60 (3 H, m, ArCH2CH, ArCH2CH and ArCH2CHCHC=O), 2.86 (1 H, dd, J = 14.5, 7.0 Hz, ArCH2CHC=O), 2.99 (1 H, dd, J = 14.0, 5.0 Hz, ArCH2CHC=O), 3.87 (1 H, dd, J = 9.00, 7.00 Hz, OCH2), 4.14 (1 H, dd, J = 10.0, 7.00 Hz, OCH2), 5.95 (4 H, m, OCH2O), 6.46-4.48 (2 H, m, 2 × Ar,), 6.62 (2 H, m, 2 × Ar), 6.64 (2 H, m, 2 × Ar). 13C NMR (100 MHz, CDCl3): δ = 35.2, 38.8 (ArCH2), 41.7 (ArCH2CHCHC=O), 46.9 (ArCH2CHCHC=O), 71.6 (OCH2), 101.4 (OCH2O) 108.6, 108.9, 109.2, 109.8, 121.9, 122.6, 131.7, 132.0, 132.1, 146.8, 146.9, 148.3 (2 × Ar), 178.8 (C=O). MS (CI, NH3): m/z calcd for C20H19O6: 355.1181. Found [MH]+: 355.1164; m/z (%) = 135 (45).