RSS-Feed abonnieren
DOI: 10.1055/s-2006-941578
Enantioselective Fluorination Reactions Catalyzed by Chiral Palladium Complexes
Publikationsverlauf
Publikationsdatum:
12. Juni 2006 (online)
Abstract
On the basis of our chiral palladium enolate chemistry, efficient catalytic enantioselective fluorination reactions have been developed. These reactions can be carried out in environmentally friendly alcoholic solvents without any precaution to exclude water and moisture. The reaction was found applicable to a wide range of active methine compounds including β-ketoesters, β-ketophosphonates, and other related compounds (up to 99% ee). Furthermore, we succeeded in developing efficient fluorination reactions of 3-substituted oxindoles, which are found among many natural products. Interestingly, sequential fluorination-solvolysis reaction of a 3-nonsubstituted oxindol allowed monofluorination of an active methylene compound, and an optically active α-fluoroarylacetate was obtained (93% ee). To confirm the utility of these reactions, stereoselective synthesis of chiral fluorinated analogues of fundamental building blocks and catalytic asymmetric synthesis of BMS204352, which is a promising agent for the treatment of stroke, were demonstrated.
1 Introduction
2 Chiral Palladium Enolates for Fluorination Reactions
3 Catalytic Enantioselective Fluorination Reactions of
β-Ketoesters
4 Reuse of the Pd Catalysts in the Fluorination Reactions Using Ionic Liquids as a Reaction Medium
5 Catalytic Enantioselective Fluorination of β-Ketophosphonates and Related Compounds
5.1 Fluorination of β-Ketophosphonates
5.2 Fluorination of Other Active Methine Compounds
6 Catalytic Enantioselective Fluorination Reactions of Oxindole Derivatives
7 Summary
Key words
asymmetric catalysis - fluorine - palladium - medicinal chemistry - ionic liquids
-
1a
Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications Wiley-VCH; Weinheim: 2004. -
1b
Hiyama T.Kanie K.Kusumoto T.Morizawa Y.Shimizu M. Organofluorine Compounds: Chemistry and Applications Springer; Berlin: 2000. -
1c
Biomedical Frontiers of Fluorine Chemistry
Ojima I.McCarthy JR.Welch JT. ACS Symposium Series 639, American Chemical Society; Washington, DC: 1996. - For reviews:
-
1d
O’Hagan D.Rzepa HS. Chem. Commun. 1997, 645 -
1e
Smart BE. J. Fluorine Chem. 2001, 109: 3 -
1f
Ismail FMD. J. Fluorine Chem. 2002, 118: 27 -
1g
Nyffeler PT.Durón SG.Burkart MD.Vincent SP.Wong C.-H. Angew. Chem. Int. Ed. 2005, 44: 192 -
1h
Shimizu M.Hiyama T. Angew. Chem. Int. Ed. 2005, 44: 214 -
2a
Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions
Ramachandran PV. ACS Symposium Series 746, American Chemical Society; Washington, DC: 2000. -
2b
Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenge and Biomedicinal Targets
Soloshonok VA. Wiley; New York: 1999. -
3a
Mikami K.Itoh Y.Yamanaka M. Chem. Rev. 2004, 104: 1 -
3b
Iseki K. Tetrahedron 1998, 54: 13887 - For representative examples of diastereoselective reactions, see:
-
4a
Iwaoka T.Murohashi T.Sato M.Kaneko C. Tetrahedron: Asymmetry 1992, 3: 1025 -
4b
Davis FA.Kasu PVN. Tetrahedron Lett. 1998, 39: 6135 -
4c
Enders D.Faure S.Potthoff M.Runsink J. Synthesis 2001, 15: 2307 - Reviews of enantioselective fluorination reactions:
-
5a
Ibrahim H.Togni A. Chem. Commun. 2004, 1147 -
5b
Ma J.-A.Cahard D. Chem. Rev. 2004, 104: 6119 -
5c
Pihko PM. Angew. Chem. Int. Ed. 2006, 45: 544 - For catalytic asymmetric α-halogenation reactions, see:
-
5d
France S.Weatherwax A.Lectka T. Eur. J. Org. Chem. 2005, 475 -
5e
Oestreich M. Angew. Chem. Int. Ed. 2005, 44: 2324 -
5f
Bartoli G.Bosco M.Carlone A.Locatelli M.Melchiorre P.Sambri L. Angew. Chem. Int. Ed. 2005, 44: 6219 -
5g
Bertelsen S.Halland N.Bachmann S.Marigo M.Braunton A.Jørgensen KA. Chem. Commun. 2005, 4821 ; and references cited therein - 6 For compound 1, see:
Fried F.Sabo EF. J. Am. Chem. Soc. 1954, 76: 1455 - 7 For compound 2, see:
Paulsen H.Antons S.Brandes A.Lögers M.Müller SN.Naab P.Schmeck C.Schneider S.Stoltefuß J. Angew. Chem. Int. Ed. 1999, 38: 3373 - 8 For compound 3, see:
Hewawasam P.Gribkoff VK.Pendri Y.Dworetzky SI.Meanwell NA.Martinez E.Boissard CG.Post-Munson DJ.Trojnacki JT.Yeleswaram K.Pajor LM.Knipe J.Gao Q.Perrone R.Starrett JE. Bioorg. Med. Chem. Lett. 2002, 12: 1023 ; and references cited therein - 9 For compound 4, see:
Inagaki H.Miyauchi S.Miyauchi RN.Kawato HC.Ohki H.Matsuhashi N.Kawakami K.Takahashi H.Takemura M. J. Med. Chem. 2003, 46: 1005 - For selected examples, see:
-
10a
Shibata N.Suzuki E.Asahi T.Shiro M. J. Am. Chem. Soc. 2001, 123: 7001 -
10b
Mohar B.Baudoux J.Plaquevent J.-C.Cahard D. Angew. Chem. Int. Ed. 2001, 40: 4214 -
10c
Greedy B.Paris J.-M.Vidal T.Gouverneur V. Angew. Chem. Int. Ed. 2003, 42: 3291 -
11a
Hintermann L.Togni A. Angew. Chem. Int. Ed. 2000, 39: 4359 -
11b
Piana S.Devillers I.Togni A.Rothlisberger U. Angew. Chem. Int. Ed. 2002, 41: 979 -
11c
Frantz R.Hintermann L.Perseghini M.Broggini D.Togni A. Org. Lett. 2003, 5: 1709 - 12 Kim D. Y., Park E. J.; Org. Lett.; 2002, 4: 545
- For recent examples, see:
-
13a
Baba Y.Ogoshi Y.Hirai G.Yanagisawa T.Nagamatsu K.Mayumi S.Hashimoto Y.Sodeoka M. Bioorg. Med. Chem. Lett. 2004, 14: 2963 -
13b
Baba Y.Mayumi S.Hirai G.Kawasaki H.Ogoshi Y.Yanagisawa T.Hashimoto Y.Sodeoka M. Bioorg. Med. Chem. Lett. 2004, 14: 2969 -
13c
Baba Y.Hirukawa N.Tanohira N.Sodeoka M. J. Am. Chem. Soc. 2003, 125: 9740 - For β-ketoesters, see:
-
14a
Ma J.-A.Cahard D. Tetrahedron: Asymmetry 2004, 15: 1007 -
14b
Shibata N.Ishimaru T.Nagai T.Kohno J.Toru T. Synlett 2004, 1703 -
14c
Shibata N.Kohno J.Takai K.Ishimaru T.Nakamura S.Toru T.Kanemasa S. Angew. Chem. Int. Ed. 2005, 44: 4204 -
14d For cyanoacetates, see:
Kim HR.Kim DY. Tetrahedron Lett. 2005, 46: 3115 -
14e For β-ketophosphonates, see:
Bernardi L.Jørgensen KA. Chem. Commun. 2005, 1324 -
14f
Kim SM.Kim HR.Kim DY. Org. Lett. 2005, 7: 2309 -
15a
Enders D.Hüttl MRM. Synlett 2005, 991 -
15b
Marigo M.Fielenbach D.Braunton A.Kjærsgaard A.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 3703 -
15c
Steiner DD.Mase N.Barbas CF. Angew. Chem. Int. Ed. 2005, 44: 3706 -
15d
Beeson TD.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 8826 -
15e
Huang Y.Walji AM.Larsen CH.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051 -
16a
Sodeoka M.Ohrai K.Shibasaki M. J. Org. Chem. 1995, 60: 2648 -
16b
Sodeoka M.Tokunoh R.Miyazaki F.Hagiwara E.Shibasaki M. Synlett 1997, 463 -
16c
Sodeoka M.Shibasaki M. Pure Appl. Chem. 1998, 70: 411 -
16d
Hagiwara E.Fujii A.Sodeoka M. J. Am. Chem. Soc. 1998, 120: 2474 -
16e
Fujii A.Hagiwara E.Sodeoka M. J. Am. Chem. Soc. 1999, 121: 5450 -
16f
Fujii A.Hagiwara E.Sodeoka M. J. Synth. Org. Chem. Jpn. 2000, 58: 728 - 17
Kumobayashi H.Miura T.Sayo N.Saito T.Zhang X. Synlett 2001, 1055 -
18a
Hamashima Y.Hotta D.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 11240 -
18b
Hamashima Y.Hotta D.Umebayashi N.Tsuchiya Y.Suzuki T.Sodeoka M. Adv. Synth. Catal. 2005, 347: 1576 -
18c
Sodeoka M.Hamashima Y. Bull. Chem. Soc. Jpn. 2005, 78: 941 - 19
Hamashima Y.Sasamoto N.Hotta D.Somei H.Umebayashi N.Sodeoka M. Angew. Chem. Int. Ed. 2005, 44: 1525 - 22
Hamashima Y.Yagi K.Takano H.Tamás L.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 14530 - 23
Hamashima Y.Suzuki T.Takano H.Shimura Y.Tsuchiya Y.Moriya K.Goto T.Sodeoka M. Tetrahedron 2006, in press - 24 For the use of α-substituted α-fluoro-β-ketoester in a drug design:
Denis A.Bretin F.Fromentin C.Bonnet A.Piltan G.Bonnefoy A.Agouridas C. Bioorg. Med. Chem. Lett. 2000, 10: 2019 - For stereoselective reduction of ketones, see:
-
25a
Fujita M.Hiyama T. J. Am. Chem. Soc. 1985, 107: 8294 -
25b
Kitazume T.Kobayashi T.Yamamoto T.Yamazaki T. J. Org. Chem. 1987, 52: 3218 - 26 Review on the reuse of chiral catalysts:
Fan Q.-H.Li Y.-M.Chan ASC. Chem. Rev. 2002, 102: 3385 -
27a
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667 -
27b
Sheldon R. Chem. Commun. 2001, 2399 -
27c
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 -
27d
Welton T. Chem. Rev. 1999, 99: 2071 - 28
Hamashima Y.Takano H.Hotta D.Sodeoka M. Org. Lett. 2003, 5: 3225 - 30 α-Fluorophosphonates have been used as mimics of a phosphate moiety. For a general review, see:
Berkowitz DB.Bose M. J. Fluorine Chem. 2001, 112: 13 - For example:
-
31a
Nieschalk J.O’Hagan D. J. Chem. Soc., Chem. Commun. 1995, 719 -
31b
Li C.Wu L.Otaka A.Smyth MS.Roller PP.Burke TR.den Hertog J.Zhang Z.-Y. Biochem. Biophys. Res. Commun. 1995, 216: 976 -
31c
Yokoyama T.Yamagishi T.Matsumoto K.Shibuya S. Tetrahedron 1996, 52: 11725 -
31d
Berkowitz DB.Bose M.Pfannenstiel TJ.Doukov T. J. Org. Chem. 2000, 65: 4498 - For selected examples, see:
-
32a
Kotoris CC.Wen W.Lough A.Taylor SD. J. Chem. Soc., Perkin Trans. 1 2000, 8: 1271 -
32b
Ruiz M.Ojea V.Quintela JM.Guillín JJ. Chem. Commun. 2002, 1600 - 33
Hamashima Y.Suzuki T.Shimura Y.Shimizu T.Umebayashi N.Tamura T.Sasamoto N.Sodeoka M. Tetrahedron Lett. 2005, 46: 1447 - For Ru, see:
-
35a
Murahashi S.-I.Naoto T.Taki H.Mizuno M.Takaya H.Komiya S.Mizuno Y.Oyasato N.Hiraoka M.Hirano M.Fukuoka A. J. Am. Chem. Soc. 1995, 117: 12436 - For Rh, see:
-
35b
Sawamura M.Hamashima H.Ito Y. J. Am. Chem. Soc. 1992, 114: 8295 -
35c
Kuwano R.Miyazaki H.Ito Y. J. Organomet. Chem. 2000, 603: 18 -
35d For Pd, see:
Takenaka K.Uozumi Y. Org. Lett. 2004, 6: 1833 ; and references therein - 36
Hamashima Y.Suzuki T.Takano H.Shimura Y.Sodeoka M. J. Am. Chem. Soc. 2005, 127: 10164 - For the synthesis of fluorous analogues of indole alkaloids, see:
-
37a
Shibata N.Tarui T.Doi Y.Kirk KL. Angew. Chem. Int. Ed. 2001, 40: 4461 -
37b
For a stoichiometric enantioselective fluorination of oxindoles, see ref. 10a.
- For stoichiometric reactions, see:
-
38a
Shibata N.Ishimaru T.Suzuki E.Kirk KL. J. Org. Chem. 2003, 68: 2494 -
38b
Zoute L.Audouard C.Plaquevent J.-C.Cahard D. Org. Biomol. Chem. 2003, 1: 1833 -
38c
Recently, Shibata and Toru et al. reported a highly enantioselective catalytic synthesis of 3 using a chiral Ni complex. See ref. 14c.
References and Notes
A space-filling model depicted in Scheme [3] was generated based on MM3 calculation method using CAChe 5.0. See also ref. 18b.
21In the case of the Michael reaction, no reaction occurred with the Pd complexes 6. The addition of a strong protic acid, such as TfOH, which promotes the reaction cooperatively with the Pd enolate as an activator of the enone, was necessary.
29Recently, Kim et al. also reported the reuse of the palladium complexes in their catalytic enantioselective fluorination. See ref. 14f.
34Hamashima, Y.; Suzuki, T.; Goto, T.; Sodeoka, M. manuscript in preparation.
39Hamashima, Y.; Moriya, K.; Sodeoka, M. unpublished results.