Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2006; 16(6): 330-336
DOI: 10.1055/s-2006-940010
Wissenschaft und Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Zur Frage einer Korrektur der Trainingsherzfrequenz im Wasser. Bedeutung der Wassertemperatur?

Concerning a Question About the Correction of the Training Heart Rate in the Water. Significance of the Water Temperature?W.  Schnizer1 , M.  Fenzl2 , 3 , O.  Knüsel2 , B.  Hartmann4
  • 1Prof. Dr. med. W. Schnizer, Agnes-Bernauer-Str. 170, 80687 München
  • 2Klinik für Rheumatologie und Rehabilitation des Bewegungsapparates, Klinik Valens, 7317 Valens, Schweiz (Ärztlicher Direktor: Dr. med. O. Knüsel)
  • 3Swiss Olympic Medical Center, CH-7310 Bad Ragaz (Ärztlicher Leiter: Dr. med. C. Schlegel)
  • 4Institut für Umweltmedizin und Krankenhaushygiene, Universitäts-Klinikum Freiburg (Direktor: Prof. Dr. med. F. Daschner), Balneologie Außenstelle Bad Krozingen (Leiter: PD Dr. med. B. Hartmann)
Further Information

Publication History

Eingegangen: 22. Juli 2005

Angenommen: 23. Mai 2006

Publication Date:
01 December 2006 (online)

Zusammenfassung

Fragestellung: Für ein Ausdauertraining im Wasser wird eine Reduktion der Trainingsherzfrequenz empfohlen. Das Ausmaß der Korrektur wird unterschiedlich beurteilt. Wir haben eine Literaturrecherche zu relevanten experimentellen Studien vorgenommen, um die Korrekturabschläge der Herzfrequenz zu belegen, und insbesondere der Frage nachzugehen, ob dabei die Wassertemperatur eine Rolle spielt. Methoden: Die Literaturrecherche wurde in den Datenbanken Medline, Dimdi-Spofor und Spolit nach folgenden Kriterien durchgeführt: Beurteilung körperlicher Belastungen (Schwimmen, Aquajogging, Wasserfahrrad) in zwei submaximalen Arbeitsintensitäten (30 - 40 und 50 - 60 % VO2max) im Vergleich mit einer Referenzbelastung an Land anhand der Belastungsherzfrequenz, Wassertemperaturen von 18 - 36 °C, gesunder Personen jüngeren bis mittleren Lebensalters. Ergebnisse: Es konnten 25 Studien lokalisiert werden. Für beide Arbeitsintensitäten fanden sich, im Vergleich zu einem belastungsäquivalenten Landtest, im Bereich von ca. 32 - 33 °C ähnliche Belastungsherzfrequenzen, Temperaturen darunter führten im Wasser zu niedrigeren und Temperaturen darüber zu höheren Herzfrequenzwerten. Schlussfolgerungen: Da eine Abhängigkeit der Belastungsherzfrequenz von der Wassertemperatur besteht, ist bei einem Training im Wasser eine pauschale Korrektur der für Land ermittelten Trainingsherzfrequenz nicht gerechtfertigt. Im Bereich von ca. 31 - 33 °C ist eine Korrektur nicht notwendig. Das ist erst unter 31 °C sinnvoll. Folgende Richtwerte für einen Abschlag der Trainingsherzfrequenz können empfohlen werden: ca. 3 - 4/min bei 30 °C; ca. 6 - 7/min bei 28 °C; ca. 8 - 9/min bei 26 °C. Über 33 °C hinausgehende Wassertemperaturen eignen sich aufgrund der zunehmenden Wärmebelastung nicht mehr für ein Ausdauertraining mit leichten bis mittelstarken Belastungsintensitäten.

Abstract

Purpose: During an endurance training in the water it is a recommendation to reduce the training heart rate. The extend of corrections differ greatly. We investigated relevant experimental studies focusing on the correction of the training heart rate, and especially to pose the question whether water temperature is significant in this context or not. Methods: The literary investigation was done using the data bank Medline, Dimdi-Spofor and Spolit. The following criteria should suffice: assessment of physical work (swimming, aquajogging, water cycling) with two intensities (30 - 40 % VO2max and 50 - 60 % VO2max) compared in water and a reference exercise on land in the parameter of heart rate, water temperature 18 - 36 °C, healthy adults of younger and middle age. Results: This investigation covered a total of 25 studies. For both exercise intensities compared to water and land there were similar responses of the heart rate at a water temperature degree of 32 - 33 °C. A reduction of heart rate occurred in the water at temperatures below, and higher heart rates at temperatures above. Conclusion: Since the literary investigation has shown a dependence on water temperature, a general correction of the training heart rate is not justified. In a water temperature of around 31 - 33 °C a correction does not seem to be necessary; that make sense below 31 °C. Following reductions in heart rate are recommended: about 3 - 4/min at 30 °C; about 6 - 7/min at 28 °C; about 8 - 9/min at 26 °C. Temperatures over 33 °C are not suitable for endurance training due to heat stress.

Literatur

  • 1 Hollmann W, Hettinger T. Sportmedizin. 4. Aufl. Stuttgart; Schattauer 2000
  • 2 Craig A B, Dvorak M. Comparison of exercise in air and in water of different temperatures.  Medicine and Science in Sports. 1969;  1 124-130
  • 3 Moore T O, Barnhauer E M, Seto G. Effect of immersion at different water temperatures on graded exercise performance in man.  Aerospace Med. 1970;  41 1404-1408
  • 4 Holmér I, Bergh U. Metabolic and thermal response to swimming in water at varying temperatures.  J Appl Physiol. 1974;  37 702-705
  • 5 McArdle W D, Magel J R, Lesmes G R, Pechar G S. Metabolic and cardiovascular adjustment to work in air and water at 18, 25 and 33 °C.  J Appl Physiol. 1976;  40 85-90
  • 6 American College of Sports Medicine .Guidelines for exercise testing and prescription. 4th Ed. Philadelphia; Lea und Febiger 1995
  • 7 Karvonen M J, Kentala E, Mustala O. The effects of training on heart rate, a longitudinal study.  Am Med Exp Biol Fenn. 1957;  35 307-315
  • 8 Magel J R, Faulkner J A. Maximum oxygen uptakes of college swimmers.  J Appl Physiol. 1967;  22 929-939
  • 9 Dixon R W, Faulkner J A. Cardiac outputs during maximum effort running and swimming.  J Appl Physiol. 1971;  30 653 -656
  • 10 Magel J R. Comparison of the physiologic response to varying intensities of submaximal work in tethered swimming and treadmill running.  J Sports Med. 1971;  11 203-212
  • 11 Mc Ardle W D, Glaser R M, Magel J R. Metabolic and cardiorespiratory responses during free swimming and treadmill walking.  J Appl Physiol. 1971;  30 733-738
  • 12 Holmér I, Lundin A, Eriksson B O. Maximum oxygen uptake during swimming and running by elite swimmers.  J Appl Physiol. 1974;  36 711-714
  • 13 Holmér I, Stein E M, Saltin B, Ekblom B, Astrand P O. Hemodynamic and respiratory responses compared in swimming and running.  J Appl Physiol. 1974;  37 49-54
  • 14 Evans B W, Cureton K J, Pürvis J W. Metabolic and circulatory responses to walking and jogging in water.  Res Q. 1978;  49 442-449
  • 15 Gleim G W, Nicholas J A. Metabolic costs and heart rate responses to treadmill walking in water at different depths and temperatures.  Am J Sports Med. 1989;  17 248-252
  • 16 Yamaji K, Greenley M, Northey D R, Hughson L. Oxygen uptake and heart hate responses to treadmill and water running.  Can J Spt Sci. 1990;  15 96-98
  • 17 Town G P, Bradley S S. Maximal metabolic responses of deep and shallow water running in trained runners.  Med Sci Sports Exerc. 1991;  23 238-241
  • 18 Svedenhag J, Seger J. Running on land and in water. Comparative exercise physiology.  Med Sci Sports Exerc. 1992;  24 1155-1160
  • 19 Frangolias D D, Rhodes E C. Maximal and ventilatory threshold responses to treadmill and water immersion running.  Med Sci Sports Exerc. 1995;  27 1007-1013
  • 20 Glass B, Wilson D, Blessing D, Miller E. A Physiological Comparison of Suspended Deep Water Running to Hard Surface Running.  J Strength Cond Res. 1995;  9 17-21
  • 21 Michaud T J, Rodriguez-Zayas J, Andres F F, Flynn M G, Lambert C P. Comparative exercise responses of deep-water and treadmill running.  J Strength Cond Res. 1995;  9 104-109
  • 22 Schlumberger A, Hemmling G, Frick U, Schmidtbleicher D. Herzfrequenz- und Laktatverhalten beim freien Laufen und beim Aquajogging.  Deutsche Zeitschrift für Sportmedizin. 1997;  48/5 183-189
  • 23 Hall J, Macdonald J A, Maddison P J, O'Hare J P. Cardiorespiratory responses to underwater treadmill walking in healthy females.  Eur J Appl Physiol. 1998;  77 278-284
  • 24 Mercer J A, Jensen R L, Fromme C F. Prediction of exercise prescription for deep water running (DWR) based on treadmill running (TM).  Med Sci Sports Exerc. 1994;  26 10
  • 25 Shimizu T, Kosaka M, Fujishima K. Human thermoregulatory responses during prolonged walking in water at 25, 30 and 35 °C.  Eur J Appl Physiol. 1998;  78 473-478
  • 26 Dowzer C N, Reilly T, Nigel T, Cable N T, Nevill A. Maximal physiological responses to deep and shallow water running.  Ergonomics. 1999;  42 275-281
  • 27 Darby L A, Yaekle B C. Physiological responses during two types of exercise performed on land and in the water.  J Sports Med Phys Fitness. 2000;  40 303-311
  • 28 Buck K, Mc Naughton L, Shernan R, Beutley D J, Batterham A M. Physiological response to treadmill walking in water at different speeds and temperatures.  Sports Med, Training and rehabilitation. 2001;  10 105-122
  • 29 Dressendorfer R H, Morlock J F, Baker D G, Hong S K. Effects of head-out water immersion on cardiorespiratory responses to maximal cycling exercise.  Undersea Biomed Res. 1976;  3 177-187
  • 30 Pirnay F, Deroanne R, Petit J M. Influence of water temperature on thermal, circulatory and respiratory responses to muscular work.  Eur J Appl Physiol. 1977;  37 129-136
  • 31 Nielsen B, Rowell L B, Bonde-Petersen F. Cardiovascular responses to heat stress and blood volume displacements during exercise in man.  Eur J Appl Physiol. 1984;  52 370-374
  • 32 Sheldahl L M, Wann L S, Clifford P S, Tristani F E, Wolf L G, Kalbfleisch J H. Effect of central hypervolemia on cardiac performance during exercise.  J Appl Physiol: Respirat Environ Exercise Physiol. 1984;  57 1662-1667
  • 33 Sheldahl L M, Tristani F E, Clifford P S, Hughes C V, Sobocinski K A, Morris R D. Effect of head-out water immersion on cardiorespiratory response to dynamic exercise.  J Am Coll Cardiol. 1987;  10 1254-1258
  • 34 Christie J L, Sheldahl L M, Tristani F E, Wann L S, Sagar K B, Levandoski L G, Ptacin M J, Sobocinski K A, Morris R D. Cardiovascular regulation during head-out water immersion exercise.  J Appl Physiol. 1990;  69 657-664
  • 35 Connelly T P, Sheldahl L M, Tristani F E, Levandoski S G, Kalkhoff R K, Hoffman M D, Kalbfleisch J H. Effect of increased central blood volume with water immersion on plasma catecholamines during exercise.  J Appl Physiol. 1990;  69 651-656
  • 36 Perini R, Milesi S, Biancardi L, Pendergast D R, Veicsteinas A. Heart rate variability in exercising humans. Effect of water immersion.  Eur J Appl Physiol. 1998;  77 326-332
  • 37 Epstein M. Renal effects of head-out water immersion in humans: a 15-year update.  Physiol Rev. 1992;  72 563-621
  • 38 Arborelius M J, Balldin U I, Lilja B, Lundgren C E. Hemodynamic changes in man during immersion with head above water.  Aerosp Med. 1972;  43 592-598
  • 39 Lin Y C. Circulatory functions during immersion and breath-hold dives in humans.  Undersea Biomed Res. 1984;  11 123-138
  • 40 Risch W D, Koubenec H J, Beckmann U, Lange S. The effect of graded immersion on heart volume, central venous pressure, pulmonary blood distribution, and heart rate in man.  Pflügers Arch. 1978;  374 115-118
  • 41 Park K S, Choi J K, Park Y S. Cardiovascular regulation during water immersion.  Appl Human Sci. 1999;  18 233-241
  • 42 Avellini B A, Shapiro Y, Pandolf K B. Cardiorespiratory physical training in water and on land.  Eur J Appl Physiol Occup Physiol. 1983;  50 255-263
  • 43 Mougios V, Deligiannis A. Effect of water temperature on performance. Lactate production and heart rate at swimming of maximal and submaximal intensity.  J Sports Med Phys Fitness. 1993;  33 27-33
  • 44 Kame V D, Pendergast D R. Effect of short term and prolonged immersion on the cardiovaskular responses to exercise.  Aviat Space environ Med. 1995;  66 20-25
  • 45 Krishna G, Danovitch G M, Sowers J R. Catecholamine responses to central volume expansion produced by head-out water immersion and saline infusion.  J Clin Endocrinol Metab. 1983;  56 998-1002

Prof. Dr. med. W. Schnizer

Agnes-Bernauer-Straße 170

80687 München

Email: Wolfgang.Schnizer@t-online.de