Synlett 2006(7): 1071-1074  
DOI: 10.1055/s-2006-939706
LETTER
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Brønsted Acid Catalyzed Transfer Hydrogenation - New Organocatalytic Reduction of Quinolines

Magnus Rueping*, Thomas Theissmann, Andrey P. Antonchick
Degussa Endowed Professorship, Institute of Organic Chemistry and Chemical Biology, Johann-Wolfgang Goethe University Frankfurt am Main, Marie-Curie-Str. 11, 60439 Frankfurt, Germany
Fax: +49(69)79829248; e-Mail: M.Rueping@chemie.uni-frankfurt.de;
Further Information

Publication History

Received 1 February 2006
Publication Date:
24 April 2006 (online)

Abstract

The first metal-free Brønsted acid catalyzed hydrogenation of quinolines using Hantzsch dihydropyridine as the hydrogen source has been developed. This, so far unprecedented organocatalytic reduction of heteroaromatic compounds provides a variety of differently substituted 1,2,3,4-tetrahydroquinolines in excellent yields under mild reaction conditions using a remarkably low amount of Brønsted acid catalyst.

    References and Notes

  • 1 For review, see: Katritzky AR. Rachwal S. Rachwal B. Tetrahedron  1996,  52:  15031 
  • For examples, see:
  • 2a Jacquemond-Collet I. Benoit-Vical F. . Valentin A. Stanislas E. Mallié M. Fourasté I. Planta Med.  2002,  68:  68 
  • 2b Wallace OB. Lauwers KS. Jones SA. Dodge JA. Bioorg. Med. Chem. Lett.  2003,  13:  1907 
  • 2c Di Fabio R. Tranquillini E. Bertani B. Alvaro G. Micheli F. Sabbatini F. Pizzi MD. Pentassuglia G. Pasquarello A. Messeri T. Donati D. Ratti E. Arban R. Dal Forno G. Reggiani A. Barnaby RJ. Bioorg. Med. Chem. Lett.  2003,  13:  3863 
  • 2d Asolkar RN. Schröder D. Heckmann R. Lang S. Wagner-Döbler I. Laatsch H. J. Antibiot.  2004,  57:  17 
  • 2e Lombardo LJ. Camuso A. Clark J. Fager K. Gullo-Brown J. Hunt JT. Inigo I. Kan D. Koplowitz B. Lee F. McGlinchey K. Qian LG. Ricca C. Rovnyak G. Traeger S. Tokarski J. Williams DK. Wu LI. Zhao YF. Manne V. Bhide RS. Bioorg. Med. Chem. Lett.  2005,  15:  1895 
  • 2f Nallan L. Bauer KD. Bendale P. Rivas K. Yokoyama K. Horney CP. Pendyala PR. Floyd D. Lombardo LJ. Williams DK. Hamilton A. Sebti S. Windsor WT. Weber PC. Buckner FS. Chakrabarti D. Gelb MH. Van Voorhis WC. J. Med. Chem.  2005,  48:  3704 
  • For some recent publications, see:
  • 3a Fujita K. Yamaguchi R. Synlett  2005,  560 
  • 3b Lam KH. Xu LJ. Feng LC. Fan QH. Lam FL. Lo WH. Chan ASC. Adv. Synth. Catal.  2005,  347:  1755 
  • 3c Xu LK. Lam KH. Ji JX. Wu J. Fan QH. Lo WH. Chan ASC. Chem. Commun.  2005,  1390 
  • 3d Lu SM. Han XW. Zhou YG. Adv. Synth. Catal.  2004,  346:  909 
  • 3e Yang PY. Zhou YG. Tetrahedron: Asymmetry  2004,  15:  1145 
  • 3f Wang WB. Lu SM. Yang PY. Han XW. Zhou YG. J. Am. Chem. Soc.  2003,  125:  10536 
  • 3g Michael JP. Nat. Prod. Rep.  2005,  22:  627 
  • 4a Ranu BC. Jana U. Sarkar A. Synth. Commun.  1998,  28:  485 
  • 4b Srikrishna A. Reddy TJ. Viswajanani R. Tetrahedron  1996,  52:  1631 
  • 4c Nose A. Kudo T. Chem. Pharm. Bull.  1984,  32:  2421 
  • 5 Rueping M. Azap C. Sugiono E. Theissmann T. Synlett  2005,  2367 
  • 6a Rueping M. Sugiono E. Azap C. Theissmann T. Bolte M. Org. Lett.  2005,  7:  3781 
  • 6b For a subsequent optimization of this procedure, see: Hoffmann S. Seayad A. List B. Angew. Chem. Int. Ed.  2005,  44:  7424 ; Angew. Chem. 2005, 117, 7590
  • 6c Storer RI. Carrera DE. Ni Y. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  84 
  • For recent conjugate reductions of α,β-unsaturated aldehydes, see:
  • 7a Yang JW. Hechavarria Fonseca MT. List B. Angew. Chem. Int. Ed.  2004,  43:  6660 ; Angew. Chem. 2004, 116, 6829
  • 7b Yang JW. Hechavarria Fonseca MT. Vignola N. List B. Angew. Chem. Int. Ed.  2005,  44:  108 ; Angew. Chem. 2005, 117, 110
  • 7c Ouellet SG. Tuttle JB. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  32 
  • 7d Adolfsson H. Angew. Chem. Int. Ed.  2005,  44:  3340 ; Angew. Chem. 2005, 117, 3404
  • 7e Lui Z. Han B. Lui Q. Zhang W. Yang L. Lui ZL. Yu W. Synlett  2005,  1579 
  • 7f Garden SJ. Guimarães CRW. Corréa B. Oliveira CAF. Pinto AC. Alencastro RB. J. Org. Chem.  2003,  68:  8815 
  • For reviews on chiral Brønsted acid catalysis, see:
  • 9a Schreiner PR. Chem. Soc. Rev.  2003,  32:  289 
  • 9b Pihko PM. Angew. Chem. Int. Ed.  2004,  43:  2062 ; Angew. Chem. 2004, 116, 2110
  • 9c Bolm C. Rantanen T. Schiffers I. Zani L. Angew. Chem. Int. Ed.  2005,  44:  1758 ; Angew. Chem. 2005, 117, 1788
  • For the use of chiral phosphoric acid catalysts, see:
  • 9d Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 ; Angew. Chem. 2004, 116, 1592
  • 9e Uraguchi D. Terada M. J. Am. Chem. Soc.  2004,  126:  5356 
  • 9f Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2004,  126:  11804 
  • 9g Akiyama T. Morita H. Itoh J. Fuchibe K. Org. Lett.  2005,  7:  2583 
  • 9h Akiyama T. Saitoh Y. Morita H. Fuchibe K. Adv. Synth. Catal.  2005,  347:  1523 
  • 9i Uraguchi D. Terada M. J. Am. Chem. Soc.  2004,  126:  5356 
  • 9j Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2004,  126:  11804 
  • 9k Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2005,  127:  9360 
  • 9l Rowland GB. Zhang H. Rowland EB. Chennamadhavuni S. Wang Y. Antilla JC. J. Am. Chem. Soc.  2005,  127:  15696 
  • 9m Terada M. Sorimachi K. Uraguchi D. Synlett  2006,  133 
  • 9n Akiyama T. Tamura Y. Itoh J. Morita H. Fuchibe K. Synlett  2006,  141 
  • 9o Rueping M. Sugiono E. Azap C. Angew. Chem. Int. Ed.  2006,  45:  2617 ; Angew. Chem.  2006,  118:  2679 
  • 10 An extension of this procedure to an asymmetric variant by employing a chiral phosphate catalyst has been achieved: Rueping M. Antonchick AP. Theissmann T. Angew. Chem. Int. Ed.  2006,  45:  in press 
8

General Procedure for the Brønsted Acid Catalyzed Transfer Hydrogenation of Quinolines.
In a typical experiment quinoline (20 mg), diphenyl phosphate (1 mol%) and Hantzsch dihydropyridine 2 (2.4 equiv) were suspended in benzene (2 mL) in a screw-capped vial and flushed with argon. The resulting mixture was allowed to stir at 60 °C for 12 h. The solvent was removed under reduced pressure and purification of the crude product by column chromatography on silica gel afforded the pure 1,2,3,4-tetrahydroquinoline. For representative examples, see:
7-Chloro-1,2,3,4-tetrahydro-4-phenylquinoline (6o): yield 19.3 mg, 94%. IR (KBr): 3412, 3396, 2919, 1604, 1492, 1089, 700 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.88-2.18 (m, 2 H, C-3H), 3.08-3.28 (m, 2 H, C-2H), 3.94 (br s, 1 H, NH), 4.01 (t, J = 6.1 Hz, 1 H, C-4H), 6.39-6.48 (m, 2 H, Ar), 6.56-6.59 (m, 1 H, Ar), 6.99-7.07 (m, 2 H, Ar), 7.09-7.27 (m, 3 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 30.7, 38.9, 42.4, 113.4, 116.8, 121.7, 126.3, 128.4, 128.6, 131.5, 132.6, 145.9, 146.0. MS-ESI: m/z = 243.8 [M+], 245.8 [M+]. Anal. Calcd for C15H14ClN (243.73): C, 73.92; H, 5.79; N, 5.75. Found: C, 73.69; H, 5.54; N, 5.74.
1,2,3,4-Tetrahydro-4,7-diphenylquinoline (6p): yield 18.6 mg, 91%. IR (KBr): 3356, 3292, 3024, 2945, 2924, 1562, 1485, 1468, 1319, 758, 698 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.93-2.27 (m, 2 H, C-3H), 3.13-3.34 (m, 2 H, C-2H), 3.96 (br s, 1 H, NH), 4.10 (t, J = 6.1 Hz, 1 H, C-4H), 6.69-6.73 (m, 3 H, Ar), 7.10-7.38 (m, 8 H, Ar), 7.45-7.50 (m, 2 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 31.2, 39.4, 42.7, 112.7, 116.2, 122.7, 126.2, 127.0, 128.4, 128.6, 128.7, 130.8, 140.4, 141.5, 145.2, 146.5. MS-ESI: m/z = 285.8 [M+]. Anal. Calcd for C21H19N (285.38): C, 88.38; H, 6.71; N, 4.91. Found: C, 88.11; H, 6.80; N, 4.79.