Subscribe to RSS
DOI: 10.1055/s-2006-939706
Metal-Free Brønsted Acid Catalyzed Transfer Hydrogenation - New Organocatalytic Reduction of Quinolines
Publication History
Publication Date:
24 April 2006 (online)
Abstract
The first metal-free Brønsted acid catalyzed hydrogenation of quinolines using Hantzsch dihydropyridine as the hydrogen source has been developed. This, so far unprecedented organocatalytic reduction of heteroaromatic compounds provides a variety of differently substituted 1,2,3,4-tetrahydroquinolines in excellent yields under mild reaction conditions using a remarkably low amount of Brønsted acid catalyst.
Key words
Brønsted acid - Hantzsch dihydropyridine - transfer hydrogenation - organocatalysis - reduction - 1,2,3,4-tetrahydroquinoline
- 1 For review, see:
Katritzky AR.Rachwal S.Rachwal B. Tetrahedron 1996, 52: 15031 - For examples, see:
-
2a
Jacquemond-Collet I.Benoit-Vical F. .Valentin A.Stanislas E.Mallié M.Fourasté I. Planta Med. 2002, 68: 68 -
2b
Wallace OB.Lauwers KS.Jones SA.Dodge JA. Bioorg. Med. Chem. Lett. 2003, 13: 1907 -
2c
Di Fabio R.Tranquillini E.Bertani B.Alvaro G.Micheli F.Sabbatini F.Pizzi MD.Pentassuglia G.Pasquarello A.Messeri T.Donati D.Ratti E.Arban R.Dal Forno G.Reggiani A.Barnaby RJ. Bioorg. Med. Chem. Lett. 2003, 13: 3863 -
2d
Asolkar RN.Schröder D.Heckmann R.Lang S.Wagner-Döbler I.Laatsch H. J. Antibiot. 2004, 57: 17 -
2e
Lombardo LJ.Camuso A.Clark J.Fager K.Gullo-Brown J.Hunt JT.Inigo I.Kan D.Koplowitz B.Lee F.McGlinchey K.Qian LG.Ricca C.Rovnyak G.Traeger S.Tokarski J.Williams DK.Wu LI.Zhao YF.Manne V.Bhide RS. Bioorg. Med. Chem. Lett. 2005, 15: 1895 -
2f
Nallan L.Bauer KD.Bendale P.Rivas K.Yokoyama K.Horney CP.Pendyala PR.Floyd D.Lombardo LJ.Williams DK.Hamilton A.Sebti S.Windsor WT.Weber PC.Buckner FS.Chakrabarti D.Gelb MH.Van Voorhis WC. J. Med. Chem. 2005, 48: 3704 - For some recent publications, see:
-
3a
Fujita K.Yamaguchi R. Synlett 2005, 560 -
3b
Lam KH.Xu LJ.Feng LC.Fan QH.Lam FL.Lo WH.Chan ASC. Adv. Synth. Catal. 2005, 347: 1755 -
3c
Xu LK.Lam KH.Ji JX.Wu J.Fan QH.Lo WH.Chan ASC. Chem. Commun. 2005, 1390 -
3d
Lu SM.Han XW.Zhou YG. Adv. Synth. Catal. 2004, 346: 909 -
3e
Yang PY.Zhou YG. Tetrahedron: Asymmetry 2004, 15: 1145 -
3f
Wang WB.Lu SM.Yang PY.Han XW.Zhou YG. J. Am. Chem. Soc. 2003, 125: 10536 -
3g
Michael JP. Nat. Prod. Rep. 2005, 22: 627 -
4a
Ranu BC.Jana U.Sarkar A. Synth. Commun. 1998, 28: 485 -
4b
Srikrishna A.Reddy TJ.Viswajanani R. Tetrahedron 1996, 52: 1631 -
4c
Nose A.Kudo T. Chem. Pharm. Bull. 1984, 32: 2421 - 5
Rueping M.Azap C.Sugiono E.Theissmann T. Synlett 2005, 2367 -
6a
Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781 -
6b For a subsequent optimization of this procedure, see:
Hoffmann S.Seayad A.List B. Angew. Chem. Int. Ed. 2005, 44: 7424 ; Angew. Chem. 2005, 117, 7590 -
6c
Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84 - For recent conjugate reductions of α,β-unsaturated aldehydes, see:
-
7a
Yang JW.Hechavarria Fonseca MT.List B. Angew. Chem. Int. Ed. 2004, 43: 6660 ; Angew. Chem. 2004, 116, 6829 -
7b
Yang JW.Hechavarria Fonseca MT.Vignola N.List B. Angew. Chem. Int. Ed. 2005, 44: 108 ; Angew. Chem. 2005, 117, 110 -
7c
Ouellet SG.Tuttle JB.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 32 -
7d
Adolfsson H. Angew. Chem. Int. Ed. 2005, 44: 3340 ; Angew. Chem. 2005, 117, 3404 -
7e
Lui Z.Han B.Lui Q.Zhang W.Yang L.Lui ZL.Yu W. Synlett 2005, 1579 -
7f
Garden SJ.Guimarães CRW.Corréa B.Oliveira CAF.Pinto AC.Alencastro RB. J. Org. Chem. 2003, 68: 8815 - For reviews on chiral Brønsted acid catalysis, see:
-
9a
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 -
9b
Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062 ; Angew. Chem. 2004, 116, 2110 -
9c
Bolm C.Rantanen T.Schiffers I.Zani L. Angew. Chem. Int. Ed. 2005, 44: 1758 ; Angew. Chem. 2005, 117, 1788 - For the use of chiral phosphoric acid catalysts, see:
-
9d
Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 ; Angew. Chem. 2004, 116, 1592 -
9e
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 -
9f
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804 -
9g
Akiyama T.Morita H.Itoh J.Fuchibe K. Org. Lett. 2005, 7: 2583 -
9h
Akiyama T.Saitoh Y.Morita H.Fuchibe K. Adv. Synth. Catal. 2005, 347: 1523 -
9i
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 -
9j
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804 -
9k
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2005, 127: 9360 -
9l
Rowland GB.Zhang H.Rowland EB.Chennamadhavuni S.Wang Y.Antilla JC. J. Am. Chem. Soc. 2005, 127: 15696 -
9m
Terada M.Sorimachi K.Uraguchi D. Synlett 2006, 133 -
9n
Akiyama T.Tamura Y.Itoh J.Morita H.Fuchibe K. Synlett 2006, 141 -
9o
Rueping M.Sugiono E.Azap C. Angew. Chem. Int. Ed. 2006, 45: 2617 ; Angew. Chem. 2006, 118: 2679 - 10 An extension of this procedure to an asymmetric variant by employing a chiral phosphate catalyst has been achieved:
Rueping M.Antonchick AP.Theissmann T. Angew. Chem. Int. Ed. 2006, 45: in press
References and Notes
General Procedure for the Brønsted Acid Catalyzed Transfer Hydrogenation of Quinolines.
In a typical experiment quinoline (20 mg), diphenyl phosphate (1 mol%) and Hantzsch dihydropyridine 2 (2.4 equiv) were suspended in benzene (2 mL) in a screw-capped vial and flushed with argon. The resulting mixture was allowed to stir at 60 °C for 12 h. The solvent was removed under reduced pressure and purification of the crude product by column chromatography on silica gel afforded the pure 1,2,3,4-tetrahydroquinoline. For representative examples, see:
7-Chloro-1,2,3,4-tetrahydro-4-phenylquinoline (6o): yield 19.3 mg, 94%. IR (KBr): 3412, 3396, 2919, 1604, 1492, 1089, 700 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.88-2.18 (m, 2 H, C-3H), 3.08-3.28 (m, 2 H, C-2H), 3.94 (br s, 1 H, NH), 4.01 (t, J = 6.1 Hz, 1 H, C-4H), 6.39-6.48 (m, 2 H, Ar), 6.56-6.59 (m, 1 H, Ar), 6.99-7.07 (m, 2 H, Ar), 7.09-7.27 (m, 3 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 30.7, 38.9, 42.4, 113.4, 116.8, 121.7, 126.3, 128.4, 128.6, 131.5, 132.6, 145.9, 146.0. MS-ESI: m/z = 243.8 [M+], 245.8 [M+]. Anal. Calcd for C15H14ClN (243.73): C, 73.92; H, 5.79; N, 5.75. Found: C, 73.69; H, 5.54; N, 5.74.
1,2,3,4-Tetrahydro-4,7-diphenylquinoline (6p): yield 18.6 mg, 91%. IR (KBr): 3356, 3292, 3024, 2945, 2924, 1562, 1485, 1468, 1319, 758, 698 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.93-2.27 (m, 2 H, C-3H), 3.13-3.34 (m, 2 H, C-2H), 3.96 (br s, 1 H, NH), 4.10 (t, J = 6.1 Hz, 1 H, C-4H), 6.69-6.73 (m, 3 H, Ar), 7.10-7.38 (m, 8 H, Ar), 7.45-7.50 (m, 2 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 31.2, 39.4, 42.7, 112.7, 116.2, 122.7, 126.2, 127.0, 128.4, 128.6, 128.7, 130.8, 140.4, 141.5, 145.2, 146.5. MS-ESI: m/z = 285.8 [M+]. Anal. Calcd for C21H19N (285.38): C, 88.38; H, 6.71; N, 4.91. Found: C, 88.11; H, 6.80; N, 4.79.