References and Notes
For reviews, see:
1a
Martens J. In
Houben-Weyl
4th ed., Vol. E21d:
de Meijere A.
Thieme;
Stuttgart:
1995.
p.4199
1b
Baxter EW.
Reitz AB.
Organic Reactions
Vol. 59:
Wiley;
New York:
2002.
p.1
1c
Gomez S.
Peters JA.
Maschmeyer T.
Adv. Synth. Catal.
2002,
344:
1037
1d
Tararov VI.
Kadyrov R.
Riermeier TH.
Fischer C.
Börner A.
Adv. Synth. Catal.
2004,
346:
561
1e
Ohkuma T.
Noyori R. In Comprehensive Asymmetric Catalysis
1st Suppl.:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
2004.
2a
Ghose AK.
Viswanadhan VN.
Wendoloski JJ.
J. Comb. Chem.
1999,
1:
55
2b
Henkel T.
Brunne RM.
Mueller H.
Reichel F.
Angew. Chem. Int. Ed.
1999,
38:
643
For selected recent examples, see:
3a
Gross T.
Seayad AM.
Ahmad M.
Beller M.
Org. Lett.
2002,
4:
2055
3b
Miriyala B.
Bhattacharyya S.
Williamson JS.
Tetrahedron
2004,
60:
1463
3c
Itoh T.
Nagata K.
Miyazaki M.
Ishikawa H.
Kurihara A.
Ohsawa A.
Tetrahedron
2004,
60:
6649
4a
John RO. In Comprehensive Biological Catalysis
Vol 2:
Sinnot M.
Academic Press;
London:
1998.
p.173
4b
Silverman RB.
The Organic Chemistry of Enzyme-Catalyzed Reactions
Academic Press;
London:
2002.
p.428
5
Steevens JB.
Pandit UK.
Tetrahedron
1983,
39:
1395
6
Fujii M.
Aida T.
Yoshihara M.
Ohno A.
Bull. Chem. Soc. Jpn.
1989,
62:
3845
7
Itoh T.
Nagata K.
Kurihara A.
Miyazaki M.
Ohsawa A.
Tetrahedron Lett.
2002,
43:
3105
8
Rueping M.
Sugioni E.
Azap C.
Theissmann T.
Bolte M.
Org. Lett.
2005,
7:
3781
9
Hoffmann S.
Seayad AM.
List B.
Angew. Chem. Int. Ed.
2005,
44:
7424
10
Storer RI.
Carrera DE.
Ni Y.
MacMillan DWC.
J. Am. Chem. Soc.
2006,
128:
84
For a review and recent examples on the use of urea and analogues in organocatalysis, see:
11a
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
VCH;
Weinheim:
2005.
11b
Yoon TP.
Jacobsen EN.
Angew. Chem. Int. Ed.
2005,
44:
466
11c
Fuerst DE.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
8964
11d
Berkessel A.
Cleemann F.
Mukherjee S.
Müller TN.
Lex J.
Angew. Chem. Int. Ed.
2005,
44:
807
11e
Xu X.
Yabuta T.
Yuan P.
Takemoto Y.
Synlett
2006,
137
12a Benzene and CH2Cl2 are as suitable as toluene, while more polar solvents such as dioxane or THF are less efficient. Protic solvents (e.g. MeOH) are of limited applicability.
12b Upon extended reaction times, the transformation may also be carried out at r.t.
13
General Procedure.
A solution of the aldehyde (1a-f, 2.20 mmol) and the amine (2a-g, 2.00 mmol) in toluene (5 mL) is treated with the Hantzsch ester (3, 608 mg, 2.40 mmol), thiourea (4, 15.2 mg, 0.200 mmol) and MS 5 Å (2.0 g). The mixture is stirred 24 h at 70 °C under nitrogen. After filtration over Celite®, the solvent is evaporated and the residue purified by flash chromatography on silica gel using mixtures of PE and EtOAc as eluants to give the product amines (5a-l) in pure form.
14a The catalyst loading may be reduced to 1 mol% upon extended reaction times (>48 h).
14b Under the same reaction conditions but in the absence of thiourea, the product amine is only obtained in low yields proving the vital influence of the organocatalyst.
15 This assumption is supported by previous calculations on related thiourea complexes with aldimines and amines: Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
16 All new compounds had spectroscopic data in support of the assigned structures.
Compound 5d: 1H NMR (300 MHz, CDCl3): δ = 3.73 (s, 3 H), 4.27 (s, 2 H), 6.56 (d, J = 9.04 Hz, 2 H), 6.76 (d, J = 9.04 Hz, 2 H), 7.12 (d, J = 8.48 Hz, 1 H), 7.60 (d, J = 10.74 Hz, 1 H), 8.10 (d, J = 2.26 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 47.95, 55.80, 114.37, 115.02, 120.26, 123.37, 132.45, 133.56, 136.76, 141.58, 152.66, 154.27. HRMS (ESI): m/z calcd for C14H15N2O4 [M + H]+: 275.1032. Found: 275,1034.
Compound 5k: 1H NMR (300 MHz, CDCl3): δ = 2.54 (s, 3 H), 4.21 (s, 1 H), 4.37 (s, 2 H), 6.71 (d, J = 4.14 Hz, 2 H), 6.82 (d, J = 3.96 Hz 2 H), 7.26-7.36 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 26.73, 48.31, 111.82, 118.01, 127.55, 128.77, 129.40, 138.27, 139.89, 148.29, 198.57. HRMS (ESI): m/z calcd for C15H16NO [M + H]+: 226,1232. Found: 226,1233.
Compound 5l: 1H NMR (400 MHz, CDCl3): δ = 3.52 (s, 2 H), 4.31 (s, 2 H), 6.60 (d, J = 8.65 Hz, 2 H), 7.07 (d, J = 8.65 Hz, 2 H), 7.26-7.34 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 40.00, 48.47, 113.12, 122.18, 127.54, 128.69, 130.24, 139.24, 139.35, 147.43, 176.85. HRMS (ESI): m/z calcd for C15H16NO2 [M + H]+: 242.1181. Found: 242.1178.