Semin Liver Dis 2006; 26(1): 003-021
DOI: 10.1055/s-2006-933559
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Etiopathogenesis of Primary Sclerosing Cholangitis

Christine A. O'Mahony1 , John M. Vierling2
  • 1Departments of Surgery, Baylor Liver Health, Baylor College of Medicine, Houston, Texas
  • 2Departments of Medicine, Baylor Liver Health, Baylor College of Medicine, Houston, Texas
Further Information

Publication History

Publication Date:
23 February 2006 (online)

ABSTRACT

The etiopathogenesis of primary sclerosing cholangitis (PSC) remains undefined. Immunopathogenetic mechanisms appear to be involved, based on human leukocyte antigen complex susceptibility associations, existence of multiple autoantibodies, and presence of inflammatory bowel disease in > 75% of patients. PSC may represent an autoimmune disease with atypical features or an immune-mediated inflammatory disease, similar to inflammatory bowel disease itself. Immunogenetic susceptibility is closely linked to ligands for innate immune cells and capacity for sustained production of proinflammatory cytokines. Immunopathogenesis involves a multistep process initiated by the activation of cholangiocyte by bacterial pathogen-associated molecular patterns (stimuli of innate immunity) and proinflammatory cytokines in conjunction with aberrant expression of gut-specific chemokines and endothelial cell adhesion molecules in the liver. After recruitment of gut-primed memory T cells into the portal tracts and peribiliary space, additional mechanisms produce focal, fibrous, obliterative lesions. Progressive periductal fibrosis, chronic inflammation, and ischemic atrophy of biliary epithelia result in ductopenia, cholestasis, and obstructive strictures, culminating in secondary biliary cirrhosis.

REFERENCES

  • 1 Vierling J M. Primary sclerosing cholangitis-an autoimmune disease?. In: Leuchner U, Broome U, Stiehl A Cholestatic Liver Diseases: Therapeutic Options and Perspectives. Lancaster, UK; Lancaster Publishing 2004: 65-72
  • 2 Worthington J, Cullen S, Chapman R. Immunopathogenesis of primary sclerosing cholangitis.  Clin Rev Allergy Immunol. 2005;  28(2) 93-103
  • 3 Vierling J M. Hepatobiliary complications in ulcerative colitis and Crohn's disease. In: Zakim D, Boyer TD Hepatology. 4th ed. Philadelphia, PA; WB Saunders 2002: 1221-1272
  • 4 Vierling J M, Braun M, Wang H-M. Immunopathogenesis of vanishing bile duct syndromes. In: Alpini G, Alvaro D, Marzioni M, LeSage G, Larusso N The Pathophysiology of Biliary Epithelia. Georgetown, TX; Landes Bioscience 2004: 330-356
  • 5 Mayer L. Redefining autoimmunity.  Gastroenterology. 2003;  125(6) 1574
  • 6 Kamradt T, Mitchison N A. Tolerance and autoimmunity.  N Engl J Med. 2001;  344(9) 655-664
  • 7 Chapman R W. Autoimmunity and primary sclerosing cholangitis. Available at: http://videocast nih gov/PastEvents NIDDK Research Workshop on Primary Sclerosing Cholangitis 2005 Accessed December 2005
  • 8 Alpini G, McGill J M, Larusso N F. The pathobiology of biliary epithelia.  Hepatology. 2002;  35(5) 1256-1268
  • 9 Batts K P. Ischemic cholangitis.  Mayo Clin Proc. 1998;  73(4) 380-385
  • 10 Fickert P, Fuchsbichler A, Wagner M et al.. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.  Gastroenterology. 2004;  127(1) 261-274
  • 11 Mathison J. Innate immunity.  J Pediatr Gastroenterol Nutr. 2005;  40(suppl 1) S13-S15
  • 12 Staros E B. Innate immunity: New approaches to understanding its clinical significance.  Am J Clin Pathol. 2005;  123(2) 305-312
  • 13 Podolsky D K. Innate immunity, NOD-2 and primary sclerosing cholangitis. Available at: http://videocast nih gov/PastEvents asp NIDDK Research Workshop on Primary Sclerosing Cholangitis 2005 December 2005
  • 14 Delves P J, Roitt I M. The immune system. Second of two parts.  N Engl J Med. 2000;  343(2) 108-117
  • 15 Delves P J, Roitt I M. The immune system. First of two parts.  N Engl J Med. 2000;  343(1) 37-49
  • 16 Esche C, Stellato C, Beck L A. Chemokines: key players in innate and adaptive immunity.  J Invest Dermatol. 2005;  125(4) 615-628
  • 17 Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity.  Nat Immunol. 2004;  5(10) 971-974
  • 18 Klein J, Sato A. The HLA system. Second of two parts.  N Engl J Med. 2000;  343(11) 782-786
  • 19 Klein J, Sato A. The HLA system. First of two parts.  N Engl J Med. 2000;  343(10) 702-709
  • 20 Ulrichs T, Porcelli S A. CD1 proteins: targets of T cell recognition in innate and adaptive immunity.  Rev Immunogenet. 2000;  2(3) 416-432
  • 21 Farrar J D, Asnagli H, Murphy K M. T helper subset development: roles of instruction, selection, and transcription.  J Clin Invest. 2002;  109(4) 431-435
  • 22 Roncarolo M G, Gregori S, Levings M. Type 1 T regulatory cells and their relationship with CD4 + CD25+ T regulatory cells.  Novartis Found Symp. 2003;  252 115-127 , [discussion 127-131]
  • 23 van Buul J D, Hordijk P L. Signaling in leukocyte transendothelial migration.  Arterioscler Thromb Vasc Biol. 2004;  24(5) 824-833
  • 24 Engelhardt B, Wolburg H. Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house?.  Eur J Immunol. 2004;  34(11) 2955-2963
  • 25 Morecki R, Glaser J H, Johnson A B, Kress Y. Detection of reovirus type 3 in the porta hepatis of an infant with extrahepatic biliary atresia: ultrastructural and immunocytochemical study.  Hepatology. 1984;  4(6) 1137-1142
  • 26 Phillips P A, Keast D, Papadimitriou J M, Walters M N, Stanley N F. Chronic obstructive jaundice induced by Reovirus type 3 in weanling mice.  Pathology. 1969;  1(3) 193-203
  • 27 Rosenberg D P, Morecki R, Lollini L O, Glaser J, Cornelius C E. Extrahepatic biliary atresia in a rhesus monkey (Macaca mulatta).  Hepatology. 1983;  3(4) 577-580
  • 28 Minuk G Y, Rascanin N, Paul R W, Lee P W, Buchan K, Kelly J K. Reovirus type 3 infection in patients with primary biliary cirrhosis and primary sclerosing cholangitis.  J Hepatol. 1987;  5(1) 8-13
  • 29 Burgart L J. Cholangitis in viral disease.  Mayo Clin Proc. 1998;  73(5) 479-482
  • 30 Mehal W Z, Hattersley A T, Chapman R W, Fleming K A. A survey of cytomegalovirus (CMV) DNA in primary sclerosing cholangitis (PSC) liver tissues using a sensitive polymerase chain reaction (PCR) based assay.  J Hepatol. 1992;  15(3) 396-399
  • 31 Chen X M, Larusso N F. Cryptosporidiosis and the pathogenesis of AIDS-cholangiopathy.  Semin Liver Dis. 2002;  22(3) 277-289
  • 32 Nilsson H O, Taneera J, Castedal M, Glatz E, Olsson R, Wadstrom T. Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis.  J Clin Microbiol. 2000;  38(3) 1072-1076
  • 33 Bjornsson E, Cederborg A, Akvist A, Simren M, Stotzer P O, Bjarnason I. Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis.  Scand J Gastroenterol. 2005;  40(9) 1090-1094
  • 34 Olsson R, Bjornsson E, Backman L et al.. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers.  J Hepatol. 1998;  28(3) 426-432
  • 35 Bjornsson E S, Kilander A F, Olsson R G. Bile duct bacterial isolates in primary sclerosing cholangitis and certain other forms of cholestasis-a study of bile cultures from ERCP.  Hepatogastroenterology. 2000;  47(36) 1504-1508
  • 36 ter Borg P C, van Buuren H R, Depla A C. Bacterial cholangitis causing secondary sclerosing cholangitis: a case report.  BMC Gastroenterol. 2002;  2 14-17
  • 37 Vierling J M. Animal models of primary sclerosing cholangitis. Available at: http://videocast nih gov/PastEvents asp NIDDK Research Workshop on Primary Sclerosing Cholangitis 2005 Accessed December 2005
  • 38 Adams D H, Eksteen B, Grant A, Lalor P F, Miles A. long-lived mucosal t cells drive hepatic inflammation in PSC. Available at: http://videocast nih gov/PastEvents asp NIDDK Research Workshop on Primary Sclerosing Cholangitis 2005 Accessed December 2005
  • 39 Lichtman S N, Keku J, Clark R L, Schwab J H, Sartor R B. Biliary tract disease in rats with experimental small bowel bacterial overgrowth.  Hepatology. 1991;  13(4) 766-772
  • 40 Lichtman S N, Okoruwa E E, Keku J, Schwab J H, Sartor R B. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth.  J Clin Invest. 1992;  90(4) 1313-1322
  • 41 Vierling J M. Aetiopathogenesis of primary sclerosing cholangitis. In: Manns MP, Chapman RW, Stiehl A, Wiesner RH Primary Sclerosing Cholangitis. London, UK; Kluuten Academic Publishers 1998: 37-45
  • 42 Saarinen S, Olerup O, Broome U. Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis.  Am J Gastroenterol. 2000;  95(11) 3195-3199
  • 43 Oshitani N, Jinno Y, Sawa Y et al.. Does colitis associated with primary sclerosing cholangitis represent an actual subset of ulcerative colitis?.  Hepatogastroenterology. 2003;  50(54) 1830-1835
  • 44 Loftus Jr E V, Harewood G C, Loftus C G et al.. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis.  Gut. 2005;  54(1) 91-96
  • 45 Lindor K D, Wiesner R H, Larusso N F, Homburger H A. Enhanced autoreactivity of T-lymphocytes in primary sclerosing cholangitis.  Hepatology. 1987;  7(5) 884-888
  • 46 Kilby A E, Krawitt E L, Albertini R J, Chastenay B F, John A. Suppressor T-cell deficiency in primary sclerosing cholangitis. Case and family study.  Dig Dis Sci. 1991;  36(9) 1213-1216
  • 47 Si L, Whiteside T L, Schade R R, Starzl T E, Van Thiel D H. T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls.  J Clin Immunol. 1984;  4(4) 262-272
  • 48 Whiteside T L, Lasky S, Si L, Van Thiel D H. Immunologic analysis of mononuclear cells in liver tissues and blood of patients with primary sclerosing cholangitis.  Hepatology. 1985;  5(3) 468-474
  • 49 Valenski W R, Herrod H G, Williams J W. In vitro evidence for B cell dysfunction in patients with chronic liver disease.  J Clin Lab Immunol. 1989;  28(4) 169-172
  • 50 Senaldi G, Donaldson P T, Magrin S et al.. Activation of the complement system in primary sclerosing cholangitis.  Gastroenterology. 1989;  97(6) 1430-1434
  • 51 Bodenheimer Jr H C, Larusso N F, Thayer Jr W R, Charland C, Staples P J, Ludwig J. Elevated circulating immune complexes in primary sclerosing cholangitis.  Hepatology. 1983;  3(2) 150-154
  • 52 Garred P, Lyon H, Christoffersen P, Mollnes T E, Tranum-Jensen J. Deposition of C3, the terminal complement complex and vitronectin in primary biliary cirrhosis and primary sclerosing cholangitis.  Liver. 1993;  13(6) 305-310
  • 53 Minuk G Y, Angus M, Brickman C M et al.. Abnormal clearance of immune complexes from the circulation of patients with primary sclerosing cholangitis.  Gastroenterology. 1985;  88(1 Pt 1) 166-170
  • 54 Bloom S, Heryet A, Fleming K, Chapman R W. Inappropriate expression of blood group antigens on biliary and colonic epithelia in primary sclerosing cholangitis.  Gut. 1993;  34(7) 977-983
  • 55 Donaldson P T. Genetics of primary sclerosing cholangitis. Available at: http://videocast nih gov/PastEvents asp NIDDK Research Workshop on Primary Sclerosing Cholangitis 2005 Accessed December 2005
  • 56 Donaldson P T. Genetics of autoimmune and viral liver diseases; understanding the issues.  J Hepatol. 2004;  41(2) 327-332
  • 57 Donaldson P T. Genetics of liver disease: immunogenetics and disease pathogenesis.  Gut. 2004;  53(4) 599-608
  • 58 Norris S, Kondeatis E, Collins R et al.. Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism.  Gastroenterology. 2001;  120(6) 1475-1482
  • 59 Wiencke K, Spurkland A, Schrumpf E, Boberg K M. Primary sclerosing cholangitis is associated to an extended B8-DR3 haplotype including particular MICA and MICB alleles.  Hepatology. 2001;  34(4 Pt 1) 625-630
  • 60 Hata K, Van Thiel D H, Herberman R B, Whiteside T L. Phenotypic and functional characteristics of lymphocytes isolated from liver biopsy specimens from patients with active liver disease.  Hepatology. 1992;  15(5) 816-823
  • 61 Martins E B, Graham A K, Chapman R W, Fleming K A. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases.  Hepatology. 1996;  23(5) 988-993
  • 62 Abraham L J, Kroeger K M. Impact of the -308 TNF promoter polymorphism on the transcriptional regulation of the TNF gene: relevance to disease.  J Leukoc Biol. 1999;  66(4) 562-566
  • 63 Mitchell S A, Grove J, Spurkland A et al.. Association of the tumour necrosis factor alpha -308 but not the interleukin 10 -627 promoter polymorphism with genetic susceptibility to primary sclerosing cholangitis.  Gut. 2001;  49(2) 288-294
  • 64 Donaldson P T, Norris S. Immunogenetics in PSC.  Best Pract Res Clin Gastroenterol. 2001;  15(4) 611-627
  • 65 Ponnuraj E M, Hayward A R. Requirement for TNF-Tnfrsf1 signalling for sclerosing cholangitis in mice chronically infected by Cryptosporidium parvum.  Clin Exp Immunol. 2002;  128(3) 416-420
  • 66 Holmberg D, Cilio C M, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease.  Autoimmunity. 2005;  38(3) 225-233
  • 67 Eri R, Jonsson J R, Pandeya N et al.. CCR5-Delta32 mutation is strongly associated with primary sclerosing cholangitis.  Genes Immun. 2004;  5(6) 444-450
  • 68 Satsangi J, Chapman R W, Haldar N et al.. A functional polymorphism of the stromelysin gene (MMP-3) influences susceptibility to primary sclerosing cholangitis.  Gastroenterology. 2001;  121(1) 124-130
  • 69 Wiencke K, Louka A S, Spurkland A, Vatn M, Schrumpf E, Boberg K M. Association of matrix metalloproteinase-1 and -3 promoter polymorphisms with clinical subsets of Norwegian primary sclerosing cholangitis patients.  J Hepatol. 2004;  41(2) 209-214
  • 70 Pauli-Magnus C, Kerb R, Fattinger K et al.. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology. 2004;  39(3) 779-791
  • 71 Hadj-Rabia S, Baala L, Vabres P et al.. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease.  Gastroenterology. 2004;  127(5) 1386-1390
  • 72 Sheth S, Shea J C, Bishop M D et al.. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis.  Hum Genet. 2003;  113(3) 286-292
  • 73 Girodon E, Sternberg D, Chazouilleres O et al.. Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis.  J Hepatol. 2002;  37(2) 192-197
  • 74 Blanco P G, Zaman M M, Junaidi O et al.. Induction of colitis in cftr-/- mice results in bile duct injury.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(2) G491-G496
  • 75 Fox R I, Kang H I. Pathogenesis of Sjogren's syndrome.  Rheum Dis Clin North Am. 1992;  18(3) 517-538
  • 76 Kouri T. Etiology of rheumatoid arthritis.  Experientia. 1985;  41(4) 434-441
  • 77 Vergani D, Mieli-Vergani G. Autoimmune hepatitis.  Minerva Gastroenterol Dietol. 2004;  50(2) 113-123
  • 78 Wong F S, Wen L. The study of HLA class II and autoimmune diabetes.  Curr Mol Med. 2003;  3(1) 1-15
  • 79 Lio D, Candore G, Romano G C et al.. Modification of cytokine patterns in subjects bearing the HLA-B8,DR3 phenotype: implications for autoimmunity.  Cytokines Cell Mol Ther. 1997;  3(4) 217-224
  • 80 Mehal W Z, Lo Y M, Wordsworth B P et al.. HLA DR4 is a marker for rapid disease progression in primary sclerosing cholangitis.  Gastroenterology. 1994;  106(1) 160-167
  • 81 Yang X, Cullen S N, Li J H, Chapman R W, Jewell D P. Susceptibility to primary sclerosing cholangitis is associated with polymorphisms of intercellular adhesion molecule-1.  J Hepatol. 2004;  40(3) 375-379
  • 82 Boberg K M, Spurkland A, Rocca G et al.. The HLA-DR3,DQ2 heterozygous genotype is associated with an accelerated progression of primary sclerosing cholangitis.  Scand J Gastroenterol. 2001;  36(8) 886-890
  • 83 Terjung B, Worman H J. Anti-neutrophil antibodies in primary sclerosing cholangitis.  Best Pract Res Clin Gastroenterol. 2001;  15(4) 629-642
  • 84 Terjung B, Spengler U, Sauerbruch T, Worman H J. Atypical p-ANCA in IBD and hepatobiliary disorders react with a 50-kilodalton nuclear envelope protein of neutrophils and myeloid cell lines.  Gastroenterology. 2000;  119(2) 310-322
  • 85 Terjung B, Muennich M, Gottwein J et al.. Identification of myleloid-specific tubulin-beta isotype 5 as target antigen of antineutrophil cytoplasmic antibodies in autoimmune liver diseases.  Hepatology. 2005;  42 288A
  • 86 Tubulin-beta .isotype 5. Available at: http://www.ncbi.nlm.nih.gov/entrez/queryfcgi?CMD=search&DB=protein Accessed December 21, 2005
  • 87 Pokorny C S, Norton I D, McCaughan G W, Selby W S. Anti-neutrophil cytoplasmic antibody: a prognostic indicator in primary sclerosing cholangitis.  J Gastroenterol Hepatol. 1994;  9(1) 40-44
  • 88 Bansi D S, Bauducci M, Bergqvist A et al.. Detection of antineutrophil cytoplasmic antibodies in primary sclerosing cholangitis: a comparison of the alkaline phosphatase and immunofluorescent techniques.  Eur J Gastroenterol Hepatol. 1997;  9(6) 575-580
  • 89 Mulder A H, Horst G, Haagsma E B, Limburg P C, Kleibeuker J H, Kallenberg C G. Prevalence and characterization of neutrophil cytoplasmic antibodies in autoimmune liver diseases.  Hepatology. 1993;  17(3) 411-417
  • 90 Mizoguchi E, Mizoguchi A, Chiba C, Niles J L, Bhan A K. Antineutrophil cytoplasmic antibodies in T-cell receptor alpha-deficient mice with chronic colitis.  Gastroenterology. 1997;  113(6) 1828-1835
  • 91 Seibold F, Brandwein S, Simpson S, Terhorst C, Elson C O. pANCA represents a cross-reactivity to enteric bacterial antigens.  J Clin Immunol. 1998;  18(2) 153-160
  • 92 Schultz H, Schinke S, Weiss J, Cerundolo V, Gross W L, Gadola S. BPI-ANCA in transporter associated with antigen presentation (TAP) deficiency: possible role in susceptibility to Gram-negative bacterial infections.  Clin Exp Immunol. 2003;  133(2) 252-259
  • 93 Schultz H, Weiss J, Carroll S F, Gross W L. The endotoxin-binding bactericidal/permeability-increasing protein (BPI): a target antigen of autoantibodies.  J Leukoc Biol. 2001;  69(4) 505-512
  • 94 Xu B, Broome U, Ericzon B G, Sumitran-Holgersson S. High frequency of autoantibodies in patients with primary sclerosing cholangitis that bind biliary epithelial cells and induce expression of CD44 and production of interleukin 6.  Gut. 2002;  51(1) 120-127
  • 95 Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage.  Cancer Sci. 2004;  95(12) 930-935
  • 96 Wittig B M, Stallmach A, Zeitz M, Gunthert U. Functional involvement of CD44 variant 7 in gut immune response.  Pathobiology. 2002;  70(3) 184-189
  • 97 Naor D, Nedvetzki S. CD44 in rheumatoid arthritis.  Arthritis Res Ther. 2003;  5(3) 105-115
  • 98 Das K M. Relationship of extraintestinal involvements in inflammatory bowel disease: new insights into autoimmune pathogenesis.  Dig Dis Sci. 1999;  44(1) 1-13
  • 99 Das K M, Vecchi M, Sakamaki S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody.  Gastroenterology. 1990;  98(2) 464-469
  • 100 Mandal A, Dasgupta A, Jeffers L et al.. Autoantibodies in sclerosing cholangitis against a shared peptide in biliary and colon epithelium.  Gastroenterology. 1994;  106(1) 185-192
  • 101 Angulo P, Peter J B, Gershwin M E et al.. Serum autoantibodies in patients with primary sclerosing cholangitis.  J Hepatol. 2000;  32(2) 182-187
  • 102 Sakamaki S, Takayanagi N, Yoshizaki N et al.. Autoantibodies against the specific epitope of human tropomyosin(s) detected by a peptide based enzyme immunoassay in sera of patients with ulcerative colitis show antibody dependent cell mediated cytotoxicity against HLA-DPw9 transfected L cells.  Gut. 2000;  47(2) 236-241
  • 103 Ludwig J. Histopathology of primary sclerosing cholangitis. In: Manns MP, Chapman RW, Stiehl A, Wiesner RH Primary Sclerosing Cholangitis. Boston, MA; Kluwer Academic 1998: 14-21
  • 104 Dienes H P, Lohse A W, Gerken G et al.. Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis.  Virchows Arch. 1997;  431(2) 119-124
  • 105 Broome U, Hultcrantz R, Scheynius A. Lack of concomitant expression of ICAM-1 and HLA-DR on bile duct cells from patients with primary sclerosing cholangitis and primary biliary cirrhosis.  Scand J Gastroenterol. 1993;  28(2) 126-130
  • 106 Ponsioen C Y, Kuiper H, Ten Kate F J, van Milligen de W M, van Deventer S J, Tytgat G N. Immunohistochemical analysis of inflammation in primary sclerosing cholangitis.  Eur J Gastroenterol Hepatol. 1999;  11(7) 769-774
  • 107 Adams D H, Afford S C. The role of cholangiocytes in the development of chronic inflammatory liver disease.  Front Biosci. 2002;  7 e276-e285
  • 108 Morland C M, Fear J, McNab G, Joplin R, Adams D H. Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.  Proc Assoc Am Physicians. 1997;  109(4) 372-382
  • 109 Sasatomi K, Noguchi K, Sakisaka S, Sata M, Tanikawa K. Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis.  J Hepatol. 1998;  29(3) 409-416
  • 110 Beaussier M, Wendum D, Fouassier L et al.. Adaptative bile duct proliferative response in experimental bile duct ischemia.  J Hepatol. 2005;  42(2) 257-265
  • 111 Benninger J, Grobholz R, Oeztuerk Y et al.. Sclerosing cholangitis following severe trauma: description of a remarkable disease entity with emphasis on possible pathophysiologic mechanisms.  World J Gastroenterol. 2005;  11(27) 4199-4205
  • 112 Ludwig J, Kim C H, Wiesner R H, Krom R A. Floxuridine-induced sclerosing cholangitis: an ischemic cholangiopathy?.  Hepatology. 1989;  9(2) 215-218
  • 113 Parangi S, Oz M C, Blume R S et al.. Hepatobiliary complications of polyarteritis nodosa.  Arch Surg. 1991;  126(7) 909-912
  • 114 Doppman J L, Girton M E. Bile duct scarring following ethanol embolization of the hepatic artery: an experimental study in monkeys.  Radiology. 1984;  152(3) 621-626
  • 115 Washington K, Clavien P A, Killenberg P. Peribiliary vascular plexus in primary sclerosing cholangitis and primary biliary cirrhosis.  Hum Pathol. 1997;  28(7) 791-795
  • 116 Patel T. Aberrant local renin-angiotensin II responses in the pathogenesis of primary sclerosing cholangitis.  Med Hypotheses. 2003;  61(1) 64-67
  • 117 Probert C S, Christ A D, Saubermann L J et al.. Analysis of human common bile duct-associated T cells: evidence for oligoclonality, T cell clonal persistence, and epithelial cell recognition.  J Immunol. 1997;  158(4) 1941-1948
  • 118 Eksteen B, Grant A J, Miles A et al.. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis.  J Exp Med. 2004;  200(11) 1511-1517
  • 119 Grant A J, Lalor P F, Salmi M, Jalkanen S, Adams D H. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease.  Lancet. 2002;  359(9301) 150-157
  • 120 Klugewitz K, Adams D H, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment?.  Trends Immunol. 2004;  25(11) 590-594
  • 121 Broome U, Grunewald J, Scheynius A, Olerup O, Hultcrantz R. Preferential V beta3 usage by hepatic T lymphocytes in patients with primary sclerosing cholangitis.  J Hepatol. 1997;  26(3) 527-534
  • 122 Viney J L, Jones S, Chiu H H et al.. Mucosal addressin cell adhesion molecule-1: a structural and functional analysis demarcates the integrin binding motif.  J Immunol. 1996;  157(6) 2488-2497
  • 123 Hillan K J, Hagler K E, MacSween R N et al.. Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease.  Liver. 1999;  19(6) 509-518
  • 124 Grant A J, Lalor P F, Hubscher S G, Briskin M, Adams D H. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease).  Hepatology. 2001;  33(5) 1065-1072
  • 125 Grant A J, Goddard S, Ahmed-Choudhury J et al.. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease.  Am J Pathol. 2002;  160(4) 1445-1455
  • 126 Eksteen B, Miles A E, Grant A J, Adams D H. Lymphocyte homing in the pathogenesis of extra-intestinal manifestations of inflammatory bowel disease.  Clin Med. 2004;  4(2) 173-180
  • 127 Lalor P F, Edwards S, McNab G, Salmi M, Jalkanen S, Adams D H. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.  J Immunol. 2002;  169(2) 983-992
  • 128 Mora J R, Bono M R, Manjunath N et al.. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells.  Nature. 2003;  424(6944) 88-93
  • 129 Bo X, Broome U, Remberger M, Sumitran-Holgersson S. Tumour necrosis factor alpha impairs function of liver derived T lymphocytes and natural killer cells in patients with primary sclerosing cholangitis.  Gut. 2001;  49(1) 131-141
  • 130 Cameron R G, Blendis L M, Neuman M G. Accumulation of macrophages in primary sclerosing cholangitis.  Clin Biochem. 2001;  34(3) 195-201
  • 131 Kuroe K, Haga Y, Funakoshi O, Mizuki I, Kanazawa K, Yoshida Y. Extraintestinal manifestations of granulomatous enterocolitis induced in rabbits by long-term submucosal administration of muramyl dipeptide emulsified with Freund's incomplete adjuvant.  J Gastroenterol. 1996;  31(2) 199-206
  • 132 Yamada S, Ishii M, Liang L S, Yamamoto T, Toyota T. Small duct cholangitis induced by N-formyl L-methionine L-leucine L-tyrosine in rats.  J Gastroenterol. 1994;  29(5) 631-636
  • 133 Sakisaka S, Kawaguchi T, Taniguchi E et al.. Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology. 2001;  33(6) 1460-1468
  • 134 Hobson C H, Butt T J, Ferry D M, Hunter J, Chadwick V S, Broom M F. Enterohepatic circulation of bacterial chemotactic peptide in rats with experimental colitis.  Gastroenterology. 1988;  94(4) 1006-1013
  • 135 Watt S M, Fawcett J, Murdoch S J et al.. CD66 identifies the biliary glycoprotein (BGP) adhesion molecule: cloning, expression, and adhesion functions of the BGPc splice variant.  Blood. 1994;  84(1) 200-210
  • 136 Riethdorf L, Lisboa B W, Henkel U, Naumann M, Wagener C, Loning T. Differential expression of CD66a (BGP), a cell adhesion molecule of the carcinoembryonic antigen family, in benign, premalignant, and malignant lesions of the human mammary gland.  J Histochem Cytochem. 1997;  45(7) 957-963
  • 137 Morales V M, Christ A, Watt S M et al.. Regulation of human intestinal intraepithelial lymphocyte cytolytic function by biliary glycoprotein (CD66a).  J Immunol. 1999;  163(3) 1363-1370
  • 138 Grappone C, Pinzani M, Parola M et al.. Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats.  J Hepatol. 1999;  31(1) 100-109
  • 139 Pinzani M. Liver fibrosis.  Springer Semin Immunopathol. 1999;  21(4) 475-490
  • 140 Ishii M, Iwai M, Harada Y et al.. A role of mast cells for hepatic fibrosis in primary sclerosing cholangitis.  Hepatol Res. 2005;  31(3) 127-131
  • 141 Ishii M, Iwai M, Harada Y et al.. A role of mast cells for hepatic fibrosis in primary sclerosing cholangitis.  Hepatol Res. 2005;  31(3) 127-131

John M VierlingM.D. FACP 

Professor of Medicine and Surgery Baylor College of Medicine

1709 Dryden, Suite 1500, Houston, TX 77030

Email: vierling@bcm.tmc.edu