RSS-Feed abonnieren
DOI: 10.1055/s-2006-933099
Diastereoselective Baylis-Hillman Reaction: First Use of Sugar-Derived α,β-Unsaturated δ-Lactone as Chiral Michael Acceptor [1]
Publikationsverlauf
Publikationsdatum:
20. Februar 2006 (online)
Abstract
Diastereoselective Baylis-Hillman reaction of sugar-derived α,β-unsaturated δ-lactone with several aromatic aldehydes in presence of DABCO (50 mol%) to afford adducts in moderate to good yields (49-75%) with 30-82% de is being reported for the first time. Quantum chemical calculations based on the stabilities of transition structures and on the stabilities of zwitterionic intermediates rationalized the experimental observations.
Key words
sugar-derived α,β-unsaturated δ-lactones - diastereoselective Baylis-Hillman reactions - 2-C-branched glycosides - zwitterion intermediates - computational studies - transition state structures
IICT communication no. 050728.
-
2a
Comprehensive Organic Synthesis
Vol. 1-9:
Trost BM.Fleming I. Pergamon; New York: 1991. -
2b
Roy R.Dominique R.Das SK. J. Org. Chem. 1999, 64: 5408 -
2c
Canac Y.Levoirier E.Lubineau A. J. Org. Chem. 2001, 66: 3206 -
3a
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
3b
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
3c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
3d
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
4a
Brzezinski LJ.Rafel S.Leahy JW. J. Am. Chem. Soc. 1997, 119: 4317 -
4b
Iwabuchi Y.Furukawa M.Esumi T.Hatakeyama S. Chem. Commun. 2001, 2030 -
4c
Wang B.Yu X.-M.Lin GQ. Synlett 2001, 904 -
4d
Iwabuchi Y.Sugihara T.Hatakeyama S. Tetrahedron Lett. 2001, 42: 7867 -
4e
Masunari A.Ishida E.Trazzi G.Almeida WP.Coelho F. Synth. Commun. 2001, 31: 2127 -
4f
Sammelson RE.Gurusinghe CD.Kurth JE.Olmstead MM.Kurth MJ. J. Org. Chem. 2002, 67: 876 -
4g
Radha Krishna P.Narsingam M.Kannan V. Tetrahedron Lett. 2004, 45: 4773 -
5a
Feist H.Peseke K.Koll P. Carbohydr. Res. 1993, 247: 315 -
5b
Beyer J.Skaanderup PR.Madsen R. J. Am. Chem. Soc. 2000, 122: 9575 -
6a
Calvo-Maeto A.Camarasa M.-J.Diaj-Ortiz A.Heras FGDL.Alemany A. J. Carbohydr. Chem. 1989, 8: 395 ; and references cited therein -
6b
Saba A.Adovasio V.Nardelli M. Tetrahedron: Asymmetry 1992, 3: 1573 -
6c
Moradei O.du Mortier CM.Cirelli AF.Thiem J. J. Carbohydr. Chem. 1999, 18: 15 -
6d
Kuhla B.Peseke K.Thiele G.Michalik M. J. Prakt. Chem. 2000, 342: 240 - 7
Sagar R.Pant CS.Pathak R.Shaw AK. Tetrahedron 2004, 60: 11399 - 8
Subramanian K.Hardin J.Li G. Tetrahedron Lett. 2003, 44: 2991 -
9a
Jauch J. Synlett 1999, 1325 -
9b
Jauch J. Angew. Chem. Int. Ed. 2000, 39: 2764 -
9c
Jauch J. J. Org. Chem. 2001, 66: 609 - 10
Frank X.Figadère B. Tetrahedron Lett. 2002, 43: 1449 -
11a
Radha Krishna P.Raja Sekhar E.Kannan V. Tetrahedron Lett. 2003, 44: 4973 -
11b
Radha Krishna P.Kannan V.Sharma GVM.Ramana Rao MHV. Synlett 2003, 888 -
11c
Radha Krishna P.Manjuvani A.Kannan V.Sharma GVM. Tetrahedron Lett. 2004, 45: 1183 -
11d
Radha Krishna P.Krishna Rao L.Kannan V. Tetrahedron Lett. 2004, 45: 7847 -
11e
Radha Krishna P.Rachna S.Kannan V. Chem. Commun. 2004, 2580 -
11f
Radha Krishna P.Kannan V.Sharma GVM. J. Org. Chem. 2004, 69: 6467 - 12
Sharma GVM.Radha Krishna P. Curr. Org. Chem. 2004, 8: 1187 -
13a
Jarglis P.Lichtenthaler FW. Tetrahedron Lett. 1982, 23: 3781 -
13b
Roth BD.Roark WH. Tetrahedron Lett. 1988, 29: 1255 - 15
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision A.1 Gaussian, Inc.; Pittsburgh PA: 2003. - 16
Cahn RS.Ingold C.Prelog V. Angew. Chem., Int. Ed. Engl. 1966, 5: 385 ; Angew. Chem. 1966, 78, 413
References and Notes
IICT communication no. 050728.
14
General Experimental Procedure.
To a stirred solution of lactone (1.5 mmol) in anhyd DMSO (1.5 mL), aldehyde (1 mmol) was added followed by DABCO (0.5 mmol) and the reaction mixture stirred for 36 h at r.t. After completion of the reaction (TLC), the reaction mixture was diluted with EtOAc (20 mL), washed sequentially with H2O (1 × 15 mL), brine (2 × 10 mL), concentrated and dried (Na2SO4). The residue was purified by chromatography on silica gel (120 mesh, n-hexane-EtOAc, 6:4) to give the corresponding adduct.
Spectral Data for Selected Compounds.
Compound 3a: light-yellow syrup; [α]D +20.1 (c 1.1, CHCl3). 1H NMR (200 MHz, CDCl3 TMS): δ = 8.16 (d, 2 H, J = 9.06 Hz, Ar-H), 7.64 (d, 2 H, J = 9.06 Hz, Ar-H), 6.94 (d, 0.91 H, J = 5.50 Hz, olefinic), 6.88 (d, 0.09 H, J = 1.51 Hz, olefinic), 5.62 (s, 1 H, benzylic), 5.52 (dd, 1 H, J = 3.00, 6.79 Hz, H-4), 4.61 (m, 1 H, H-5), 4.27-4.1 (m, 2 H, H-6), 2.13 (s, 3 H, CH3), 2.01 (s, 3 H, CH3). 13C NMR (75 MHz, CDCl3, TMS): δ = 170.1, 170.0, 160.2, 148.2, 147.8, 139.0, 134.0, 128.0, 124.0, 76.0, 71.0, 61.5, 61.0, 23.0, 21.0. FAB-MS: m/z = 379 [M]+, 362 [M - OH]+. IR (neat): 3399, 2925, 1716, 1349, 1026, 823 cm-1. Anal. Calcd for C17H17NO9: C, 53.83; H, 4.52. Found: C, 53.77; H, 4. 47.
Compound 3b: pale-yellow syrup; [α]D -78.3 (c 0.27, CHCl3). 1H NMR (300 MHz, CDCl3, TMS): δ = 7.35 (m, 3 H, Ar-H), 6.67 (d, 0.85 H, J = 6.04 Hz, olefinic), 6.58 (d, 0.15 H, J = 2.26 Hz, olefinic), 5.55 (m, 1 H, benzylic), 5.34 (dd, J = 3.02, 6.04 Hz, H-4), 4.72 (m, 0.85 H, H-5), 4.58 (m, 0.15 H, H-5), 4.40-4.10 (m, 2 H, H-6), 2.15 (s, 3 H, CH3), 2.05 (s, 3 H, CH3). ES-MS: m/z = 317 [M+ -2 × CH3CO]. IR (neat): 3469, 3031, 2925, 1740, 1455, 1372, 1225, 1047, 832, 761 cm-1. Anal. Calcd for C17H16Cl2O7: C, 50.64; H, 4.00. Found: C, 50.58; H, 3.79.
Compound 3c: light-yellow syrup; [α]D +39.2 (c 0.7, CHCl3). 1H NMR (200 MHz, CDCl3, TMS): δ = 8.00 (d, 1 H, J = 7.92 Hz, Ar-H), 7.84 (d, 1 H, J = 7.13 Hz, Ar-H), 7.65 (t, 1 H, J = 7.92 Hz, Ar-H), 7.50 (t, 1 H, J = 8.71 Hz, Ar-H), 6.54 (d, 0.88 H, J = 6.33 Hz, olefinic), 6.30 (d, 0.12 H, J = 1.58 Hz, olefinic), 6.17 (s, 1 H, benzylic), 5.53 (dd, 0.88 H, J = 1.58, 7.92 Hz, H-4), 5.26 (dd, 0.12 H, J = 2.37, 6.33 Hz, H-4), 4.67 (dt, 0.12 H, J = 2.37, 7.13, 12.60 Hz, H-5), 4.55 (dt, 0.88 H, J = 3.17, 7.92, 12.67 Hz, H-5), 4.40-4.20 (m, 2 H, H-6), 2.09 (s, 3 H, CH3), 2.06 (s, 3 H, CH3). 13C NMR (75 MHz, CDCl3, TMS): δ = 170.3, 169.5, 160.3, 138.2, 137.8, 134.7, 134.4, 134.0, 133.9, 129.13, 124.94, 75.9, 67.0, 63.8, 61.7, 20.6, 20.4. FAB-MS: m/z = 379 [M]+, 362 [M - OH]+, 293 [M - 2 × COCH3]+. IR (neat): 3463, 2929, 2885, 1739, 1528, 1368, 1220, 1051, 755 cm-1. Anal. Calcd for C17H17NO9: C, 53.83; H, 4.52. Found: C, 53.76; H, 4.47.
Compound 3d: pale yellow syrup; [α]D +133.0 (c 0.1, CHCl3). 1H NMR (200 MHz, CDCl3, TMS): δ = 7.35 (m, 2 H, Ar-H), 7.05 (m, 2 H, Ar-H), 6.65 (d, 0.7 H, J = 5.94 Hz, olefinic), 6.58 (d, 0.3 H, J = 2.23 Hz, olefinic), 5.52 (br s, 1 H, benzylic), 5.30 (dd, 1 H, J = 2.97, 5.94 Hz, H-4), 4.70 (m, 0.7 H, H-5), 4.58 (m, 0.3 H, H-5), 4.40-4.10 (m, 2 H, H-6), 3.30 (br s, 0.7 H, OH), 2.95 (br s, 0.3 H, OH), 2.15 (s, 0.9 H, CH3), 2.12 (s, 2.1 H, CH3), 2.09 (s, 2.1 H, CH3), 2.03 (s, 0.9 H, CH3). ES-MS: m/z = 335 [M+ - OH]. Anal. Calcd for C17H17FO7: C, 57.96; H, 4.86. Found: C, 57.91; H, 4.77.