Subscribe to RSS
DOI: 10.1055/s-2006-932496
A Facile and Stereoselective Synthesis of Unsymmetrical Diallylsulfides via Indium-Promoted One-Pot Reaction of Baylis-Hillman Acetates, Sodium Thiosulfate, and Allyl Bromide
Publication History
Publication Date:
20 February 2006 (online)
Abstract
A facile and stereoselective synthesis of unsymmetrical diallylsulfides was achieved in moderate to good yields via indium-promoted one-pot reaction of Baylis-Hillman acetates, sodium thiosulfate, and allyl bromide.
Key words
stereoselective - diallylsulfides - allyl bromide - Baylis-Hillman acetates - indium
-
1a
Evans DA.Andrews GC. Acc. Chem. Res. 1974, 7: 147 -
1b
Werstiuk NH. Tetrahedron 1983, 39: 205 -
1c
Block E. Reactions of Organosulfur Compounds Academic Press; New York: 1978. - For reviews, see:
-
2a
Markó IE. In Comprehensive Organic Synthesis Vol 3:Trost BM.Fleming I.Pattenden G. Pergamon; New York: 1991. Chap. 3.10. -
2b
Vedejs E. Acc. Chem. Res. 1984, 17: 358 -
2c
Li AH.Dai LX.Aggarwal VK. Chem. Rev. 1997, 97: 2341 - Examples for [2,3]-sigmatropic rearrangements of allyl sulfides, see:
-
3a
Ma M.Peng L.Li C.Zhang X.Wang J. J. Am. Chem. Soc. 2005, 127: 15016 -
3b
McMillen DW.Varga N.Reed BA.King C. J. Org. Chem. 2000, 65: 2532 -
3c
Zhang XM.Qu ZH.Shi WF.Jin XL.Wang JB. J. Org. Chem. 2002, 67: 5621 -
3d
Gulea M.Marchand P.Masson S.Saquet M.Collignon N. Synthesis 1998, 1635 -
3e
Bell PT.Cagle PC.Vichard D.Gladysz JA. Organometallics 1996, 15: 4695 -
3f
Cagle PC.Meyer O.Weickhardt K.Arif AM.Gladysz JA. J. Am. Chem. Soc. 1995, 117: 11730 -
3g
Carter DS.van Vranken DL. Tetrahedron Lett. 1999, 40: 1617 - 4
Castro AMM. Chem. Rev. 2004, 104: 2939 -
5a
Streiff S.Ribeiro N.Désaubry L. J. Org. Chem. 2004, 69: 7592 -
5b
Perales JB.Makino NF.van Vranken DL. J. Org. Chem. 2002, 67: 6711 -
5c
Cheng D.Zhu SR.Yu ZF.Cohe T. J. Am. Chem. Soc. 2001, 123: 30 -
5d
Conrad JC.Parnas HH.Snelgrove JL.Fogg DE. J. Am. Chem. Soc. 2005, 127: 11882 -
5e
Malmström J.Gupta V.Engman L. J. Org. Chem. 1998, 63: 3318 -
5f
Albéniz AC.Espinet P.Lin YS. Organometallics 1996, 15: 5010 -
6a
Arora A.Tripathi C.Shukla Y. Curr. Cancer Ther. Rev. 2005, 1: 199 -
6b
Arora A.Seth K.Shukla Y. Carcinogenesis 2004, 25: 941 -
6c
Thomas RD.Green M.Wilson C.Sadrud-Din S. Carcinogenesis 2004, 25: 787 -
6d
Green M.Wilson C.Newell O.Sadrud-Din S.Thomas R. Food Chem. Toxicol. 2005, 43: 1323 - 7
Sato T.Hiramura Y.Otera J.Nozaki H. Tetrahedron Lett. 1989, 30: 2821 - 8
Shinada T.Yoshida Y.Ohfune Y. Tetrahedron Lett. 1998, 39: 6027 -
9a
Zhan ZP.Lang K. Chem. Lett. 2004, 33: 1370 -
9b
Zhan ZP.Zhang YM. J. Chem. Res., Synop. 1999, 280 -
9c
Zhan ZP.Zhang YM. J. Chem. Res., Synop. 1998, 148 -
9d
Zhan ZP.Zhang YM. Synth. Commun. 1998, 28: 493 - For reviews, see:
-
10a
Ciganek E. Org. React. 1997, 51: 201 -
10b
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
10c
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 - For recent examples, see:
-
11a
Das B.Majhi A.Banerjee J.Chowdhury N.Venkateswarlu K. Tetrahedron Lett. 2005, 46: 7913 -
11b
Das B.Mahender G.Chowdhury N.Banerjee J. Synlett 2005, 1000 -
11c
Kim JN.Lee HJ.Lee KY.Gong JH. Synlett 2002, 173 -
11d
Kabalka GW.Venkataiah B.Dong G. Org. Lett. 2003, 5: 3803 -
11e
Kabalka GW.Venkataiah B.Dong G. Tetrahedron Lett. 2003, 44: 4673 -
11f
Chung YM.G ong JH.Kim TH.Kim JN. Tetrahedron Lett. 2001, 42: 9023 -
11g
Shi M.Jiang JK.Feng YS. Org. Lett. 2000, 2: 2397 -
12a
Li J.Qian WX.Zhang YM. Tetrahedron 2004, 60: 5793 -
12b
Li J.Xu H.Zhang YM. Tetrahedron Lett. 2005, 46: 1931 -
12c
Li J.Wang XX.Zhang YM. Synlett 2005, 1039 -
12d
Li J.Wang XX.Zhang YM. Tetrahedron Lett. 2005, 46: 5233 - 13
Liu YK.Li J.Zheng H.Xu DQ.Xu ZY. Synlett 2005, 2999 - Some allyl sulfide analogues prepared from Baylis-Hillman alcohols or Baylis-Hillman bromides by other approaches have been previously reported in literature, see:
-
14a
Calò V.Lopez L.Pesce G. J. Organomet. Chem. 1988, 353: 405 -
14b
Auvray P.Knochel P.Normant JF. Tetrahedron 1988, 44: 6095 -
14c
Deane PO.Guthrie-Strachan JJ.Kaye PT.Whittaker RE. Synth. Commun. 1988, 28: 2601 - All Baylis-Hillman acetates were prepared according to literature:
-
15a
Hoffman HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1983, 22: 795 -
15b
David HO.Kenneth MN. J. Org. Chem. 2003, 68: 6427 - According to the literature, in the 1H NMR spectrum of a trisubstituted alkene the β-vinylic proton, cis and trans to the ester group are known to resonate at δ = 7.5 ppm and δ = 6.5 ppm, respectively, when alkene is substituted by an aryl group; while the same proton cis and trans to an ester group appears at δ = 6.8 ppm and δ = 5.7 ppm, respectively, when substituted by an alkyl one. See:
-
17a
Larson GL.de Kaifer CF.Seda R.Torres LE.Ramirez JR. J. Org. Chem. 1984, 49: 3385 -
17b
Basavaiah D.Sarma PKS.Bhavani AKD. J. Chem. Soc., Chem. Commun. 1994, 1091 -
17c
Baraldi PG.Guarneri M.Pollini GP.Simoni D.Barco A.Benetti S. J. Chem. Soc., Perkin Trans. 1 1984, 2501 -
17d
Tanaka K.Yamagishi N.Tanikaga R.Kaji A. Bull. Chem. Soc. Jpn. 1983, 56: 528 - 19
Li CJ. Chem. Rev. 2005, 105: 3095
References and Notes
General Procedure for the Preparation of Sodium (
Z
)-Allyl Thiosulfates.
In a 25-mL flask were added Na2SSO3·5H2O (0.25 g, 1 mmol), Baylis-Hillman acetate 1 (1 mmol), and anhyd MeOH (15 mL). The mixture was stirred at r.t. for 4-8 h. Then, to the resultant mixture was added silica gel powder (2.0 g). After evaporation of the solvent, the silica gel-absorbed crude product was loaded to chromatography column for further purification using MeOH-EtOAc (1:1) as eluent.
Selected spectroscopic data for compound 2:
Compound 2a: 1H NMR (400 MHz, DMSO-d
6): δ = 3.71 (s, 3 H, OCH
3), 4.05 (s, 2 H, methylene-H), 7.38-7.46 (m, 3 H, ArH), 7.63 (s, 1 H, ArCH=), 7.67-7.72 (m, 2 H, ArH). 13C NMR (100 MHz, DMSO-d
6): δ = 31.49, 52.35, 127.33, 128.86, 129.56, 130.42, 134.24, 140.77, 167.28. IR (KBr): ν = 3082, 3026, 1714, 1625 cm-1. MS (70 eV): m/z (%) = 207 [M+ - SO3Na]. Anal. Calcd for C11H11NaO5S2: C, 42.57; H, 3.57. Found: C, 42.89; H, 3.65.
General Procedure for the One-Pot Synthesis of Unsymmetrical Diallylsulfides.
After the sodium (Z)-allyl thiosulfate was readily prepared under an inert atmosphere according to the procedure given in ref. 15, allyl bromide (3 mmol) and In (1.5 mmol) were added to the sodium (Z)-allyl thiosulfate solution, the resulting mixture was stirred at r.t. for 30 min. Then the mixture was stirred at 55 °C for 8-12 h. Upon completion, the reaction mixture was cooled down to r.t. and extracted with Et2O (2 × 30 mL), washed with brine (15 mL), and dried over MgSO4. After evaporation of solvent, the residue was purified by chromatography using cyclohexane-EtOAc (6:1) as eluent.
Selected spectroscopic data for compounds 3:
Compound 3a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.16 (d, 2 H, J = 6.8 Hz), 3.59 (s, 2 H), 3.86 (s, 3 H), 4.84-5.04 (m, 2 H), 5.77 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.26-7.50 (m, 5 H, ArH), 7.76 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.11, 36.14, 52.44, 117.33, 125.72, 127.88, 128.82, 129.11, 129.84, 134.34, 140.81, 168.24. IR (film): ν = 3081, 3060, 3026, 1716, 1633, 1597 cm-1.
MS (70 eV): m/z (%) = 248 [M+]. Anal. Calcd for C14H16O2S: C, 67.71; H, 6.49. Found: C, 67.50; H, 6.62.
Compound 3c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.19 (d, 2 H, J = 6.8 Hz), 3.55 (s, 2 H), 3.86 (s, 3 H), 4.96-5.06 (m, 2 H), 5.80 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.46 (d, 2 H, J = 8.0 Hz, ArH), 7.69 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 27.82, 36.06, 52.35, 117.33, 125.51, 128.86, 129.70, 130.94, 133.29, 133.93, 139.39, 167.66. IR (film): ν = 3076, 3054, 3023, 1718, 1632, 1593 cm-1. MS (70 eV): m/z (%) = 282 [M+], 284 [M+ + 2]. Anal. Calcd for C14H15ClO2S: C, 59.46; H, 5.35. Found: C, 59.21; H, 5.43.
Compound 3e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.21 (d, 2 H, J = 6.8 Hz), 3.62 (s, 2 H), 3.84 (s, 3 H), 3.85 (s, 3 H), 4.99-5.07 (m, 2 H), 5.84 (ddt, 1 H, J
1 = 16.8 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 6.94 (d, 2 H, J = 9.2 Hz, ArH), 7.50 (d, 2 H, J = 9.2 Hz, ArH), 7.71 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.17, 35.22, 52.16, 55.31, 113.70, 114.07, 117.15, 127.41, 128.80, 131.63, 134.12, 140.71, 160.26, 168.17. IR (film): ν = 3075, 3058, 3023, 1714, 1632, 1605 cm-1. MS (70 eV): m/z (%) = 278 [M+]. Anal. Calcd for C15H18O3S: C, 64.72; H, 6.52. Found: C, 64.96; H, 6.62.