Erfahrungsheilkunde 2006; 55(8): 413-422
DOI: 10.1055/s-2006-932371
Originalia

Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Molekulare Wirkungsmechanismen von n-Butyrat

Steuerung wichtiger zellulärer Abläufe durch ErnährungRoland Werk, Jürgen Heinrich
Further Information

Publication History

Publication Date:
15 August 2006 (online)

Zusammenfassung

n-Butyrat wird als Stoffwechselprodukt des anaeroben Abbaus hochpolymerer Pflanzenspeicherstoffe durch die physiologische Dickdarmflora gebildet. Die Bedeutung von n-Butyrat liegt in seiner Funktion als wichtigster Energielieferant der Kolonozyten und somit in einer stabilisierenden Wirkung auf die Kolonmukosa. Extraintestinal versorgt n-Butyrat den mitochondrialen Energiestoffwechsel von Muskel- und Hirnzellen. Daneben hat n-Butyrat eine Vielzahl wichtiger regulativer Aufgaben in den zellulären Abläufen zu übernehmen.

n-Butyrat steuert die Transkription und die posttranslationelle Modifikation von Eiweißen. Ein bedeutender Angriffspunkt sind nukleäre Transkriptionsfaktoren wie NFκB, die Einfluss auf die Entgiftung radikalischer Produkte, aber auch auf die Steuerung der Immunität über das TH1/TH2-Verhältnis und den gesteuerten programmierten Zelltod (Apoptose) haben. Einen entscheidenden Einfluss auf die Apoptose und die Zelldifferenzierung übt n-Butyrat durch Steuerung des Zellzyklus und der Zellteilung aus. n-Butyrat hat somit einen direkten Einfluss auf die Entstehung von Krebs und kann als natürliche Chemoprophylaxe verstanden werden. Die Diagnostik der körperlichen Versorgung mit n-Butyrat wird vorgestellt. Ebenso wird der Einsatz eines neu entwickelten funktionellen Lebensmittels zur Verbesserung der n-Butyrat-Versorgung besprochen.

Abstract

Butyric acid is a product of the anaerobic metabolism of highly polymeric plant fiber polysaccharides by the large intestine flora. Butyrate is an important energy source for colonozytes and thereby preventing the leaky-gut-syndrome. Butyrate regulates lipid metabolism, proinflammatory response, cell cycle, cell differentiation and tumorgenesis. The assessment of faecal butyric acid concentrations and their clinical relevance are discussed. The beneficial potential of optimal butyrate supply and its experimental effects on cancer is described.

Literatur

  • 01 Archer S Y, Hodin R A. Histon acetylation and cancer.  Current Opinion in Genetics and Development. 1999;  9 171-174
  • 02 Archer    , Meng  , Shu  , Hodin    . p21 WAF1 is required for butyrate - mediated growth inhibition of human colon cancer cells.  Proceedings of the National Academy of Science of the United States of America. 1998;  95. 6791-6796
  • 03 Bai I, Merchant G L. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21 WAF1 transcription in human cells.  Journal of Biological Chemistry. 2000;  275 30 725-30 733
  • 04 Bocker U, Nebe T, Herweck F. et al . Butyrate modulates intestinal epithelial cell-mediated neutrophil migration.  Clin. Exp. Immunol.. 2003;  131 5-60
  • 05 Boosalis M S, Bandyopadhyay R, Bresnick E H. et al . Short-chain fatty acid derivates stimulate cell proliferation and induce STAT-5 activation.  Blood. 2001;  97 3259-3267
  • 06 Bordin M, D'Atri F, Guillemot L, Citri S. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins.  Molecular cancer Research. 2004;  2 692-701
  • 07 Bryant G, Habereon C, Rao C N, Liotta L A. Butyrate induced reduction of tumor cell laminin receptors.  Cancer Research. 1986;  46 807-811
  • 08 Bud A, Qualtrough D, Jepson M A, Martines D, Paraskeva C, Pignatelli M. Butyrate down regulates λ2β1 integrin; a possible role in the induction of apoptosis in colorectal cancer cell lines.  Gut. 2003;  52 729-734
  • 09 Cavaglieri C R, Nishiyama A, Fernandes L C, Curi R, Miles E A, Calder P C. Differential effects of short chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes.  Life Science. 2003;  73 1683-1690
  • 10 Chan W C, Dahl C, Waldman T. et al . Large granular lymphocyte proliferation; an analysis of T-cell receptor gene arrangements and expression and the effect of in vitro culture with inducing agents.  Blood. 1988;  71 52-58
  • 11 Cummings J H, Macfarlaine. The control and consequences of bacterial fermentation in the human colon.  Journal Appl. Bacteriol.. 1991;  76 443-459
  • 12 Duncan S H, Barcenilla A, Stewart C S, Pryde S E, Flint H J. Acetate utilization and butyryl coenzyme (CoA): acetate-CoA transferase in butyrate. producing bacteria from the human large intestine.  Applied and Enviromental Microbiology. 2002;  68 5186-5190
  • 13 Emenaker N J, Calaf G M, Cox D, Basson M D, Qureshi N. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53 Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model.  Journal of Nutrition. 2001;  131 3041-3046
  • 14 Frankel W L, Zhang W, Singh A. et al . Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon.  Gastroenterology. 1994;  106 375-380
  • 15 Fukuda M, Kanauchi O, Araki Y. et al . Probiotic treatment of experimental colitis with germinated barley foodstuff: A comparison with probiotic or antibiotic treatment.  International Journal of Molecular Medicine. 2002;  9 65-70
  • 16 Hanafusa T, Shinji T, Shiraha H. et al . Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation.  BMC Cancer. 2005;  5 9-21
  • 17 Hashizume K, Tsukahara T, Yamada K, Koyama K, Ushida U. Megasphaera elsdenii. JCM 1772 normalizes hyperlactate production in the large intestine of fructoseoligosaccharide fed rats by stimulating butyrate production.  Journal of Nutrition. 2003;  133 3187-3190
  • 18 Jackson S K, DeLoose A, Gilbert K M. Induction of energy in Th1 cells associated with increased levels of cyclindependent kinase inhibitors p21Cip1 and p27Kip1.  J. Immunol.. 2001;  166 952-958
  • 19 Kiela P R, Ilines E R, Collins J F, Ghishan F K. Regulation of the rat NH3 gene promoter by sodium butyrate.  American Journal of Gastroenterology and Liver Physiology. 2001;  281 947-956
  • 20 Kobayashi H, Tan E M, Fleming S E. Sodium butyrate inhibitis cell growth and stimulates p21 WAF1/CIP1 protein in human colonic adenocarcima cells independently of p53 status.  Nutrition and Cancer. 2003;  46 202-211
  • 21 Lamhamedi-Cherradi S E, Zheng S, Hillard B A. et al . Transcriptional regulation of type I diabetes by NFκB.  The Journal of Immunology. 2003;  171 4886-4892
  • 22 Leuvenik H. Regulation of feed intake in sheep: the role of hormones and metaboles. Dissertation http://Library.wur.nl/wda/abstracts/ab2510.html
  • 23 Marcil V, Delvin E, Seidman E. et al . Modulation of lipid synthesis, apolipoprotein biogenesis and lipoprotein assembly by butyrate.  American Journal of Gastroenterology and Liver Physiology. 2002;  283 340-346
  • 24 Montiel F, Ortiz-Caro J, Villa A, Pascual A, Aranda A. Presence of insulin receptors in cultered glial C6 cells regulation by butyrate.  Biochemical Journal. 1989;  258 147-155
  • 25 Munshi A, Merland J F, Nishikawa T. et al . Histone deacetylase inhibitors radiosensitize huma melanoma cells by suppressing DNA repair activity.  Clinical Cancer Research. 2005;  11 4912-4922
  • 26 Oertel S H, Riess H. Antiviral treatment of Epstein-Barr virus-associated lymphoproliferations.  Recent Results Cancer Research. 2002;  159 89-95
  • 27 Pei X Y, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomide and histone deacytelase inhibitors.  Clinical Cancer Research. 2004;  10 3839-3852
  • 28 Perrin P, Pierre F, Patry Y. et al . Only fibres promoting a stable butyrate producing. In the colonic ecosystem decrease the rate of aberrant crypt foci in rats.  Gut. 2001;  48 53-61
  • 29 Powers A C, Philippe J, Hermann H, Habener J F. Sodium butyrate increases glucagon and insulin gene expression by recruiting immunocytochemically negative cells to produce hormone.  Diabetes. 1988;  10 1405-1410
  • 30 Ritzhaupt A, Ellis A, Korie K B, Shirazi-Beechey. The characterization of butyrate transport across pig and human luminal membrane.  The Journal of Physiology. 1998;  507 819-830
  • 31 Roediger W E W. Short chain fatty acids as metabolic regulators of ion absorption in the colon.  Acta Vet. Scand.. 1989;  86 116-125
  • 32 Sakata T. Short chain fatty acids as the luminal trophic factor.  Canadian Journal of Animal Science. 1984;  86 116
  • 33 Sakata T. Influence of short chain fatty acids on intestinal growth an function. In: Kritchevsky D, Bonfield C (eds.): Dietary Fiber in Health and Disease. New York; Plenum Press 1997: 191-199
  • 34 Sato H, Hirose T, Limura T, Moriyama Y, Nakashima Y. Analysis of human waste, feces and urine.  Journal of Health Science. 2001;  47 483-490
  • 35 Schauber J, Svanholm C, Termin S. et al . Expression of cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes; relevance of signalling pathways.  Gut. 2003;  52 735-741
  • 36 Scheppach W, Bartram P, Richter A. et al . Effect of short chain fatty acids on the human colonic mucosa in vitro.  J. Parenter. Enter. Nutr.. 1992;  16 43-48
  • 37 Segnin J-P, Blitiere D R de la, Boureile A. et al . Butyrate inhibits inflammatory responses through NFκB inhibition; implication for Crohn's disease.  Gut. 2000;  47 397-403
  • 38 Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T. Short chain fatty acids, but not lactate or succinate, stimulate mucus release in the rat colon.  Comp. Biochem. Physiol.. 2000;  125A 525-531
  • 39 Stein G, Kulemeier J, Lembcke B, Caspary W F. Simple and rapid method for determination of short chain fatty acids in biological materials by high-performance liquid chromatography with ultraviolett detection.  Journal of Chromatography. 1992;  576 53-61
  • 40 Tiedge M, Lenzen S. Effects of sodium butyrate on glucose transporter and glucose phosphorylating enzyme gene expression in RINm5F insulinoma cells.  Journal of Molecular Endocrinology. 1996;  17 19-26
  • 41 Umesahi Y, Yajima T, Yokokuwa T, Mutai M. Effect of organic acid absorption or bicarbonate transport in rat colon.  Pflueg. Arch.. 1979;  379 43-47
  • 42 Unger S. Die Bedeutung von Pro- und Präbiotika in der Ernährung.  Journal für Ernährungsmedizin. 1999;  1 22-29
  • 43 Walker G E, Wilson E M, Powell D, Oh Y. Butyrate a histone deacetylase inhibitor activates the human IGF binding protein-3 promoter in brest cancer cells: Molecular mechanism involves an Sp1/Sp3 multiprotein complex.  Endocrinology. 2001;  142 3817-3827
  • 44 Werk R. Differenzierungsatlas für die medizinische Mikrobiologie. Frankfurt; pmi-Verlag 1987
  • 45 Werk R, Heinrich J. Mikrobiologie der Darmflora. in Vorbereitung
  • 46 Zhu W G, Otterson G A. The interaction of histon deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells.  Current Medical Chemistry Anticancer Agents. 2003;  3 187-199

Korrespondenzadresse

Roland Werk

BABENDE Institut für
medizinische Mikrobiologie

Goethestr. 1

97072 Würzburg

Email: info@babende.de

    >