Fortschr Neurol Psychiatr 2007; 75(5): 275-284
DOI: 10.1055/s-2006-932179
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Neuropsychiatrie des Methylphenidat bei der Aufmerksamkeits-Defizit/Hyperaktivitäts-Störung (ADHS)

Neuropsychiatric Bases of the Methylphenidate-Therapy of the Attention Deficit/Hyperactivity Disorder (ADHD)M.  Huber1, 2 , E.  Kirchler2 , H.  Niederhofer3 , L.  Gruber1
  • 1Therapie Center, Ambulanz für Kinder- und Jugendpsychiatrie, Südtiroler Kinderdorf/www.kinderdorf.it, (Ärztlicher Leiter Oberarzt Dr. Markus Huber)
  • 2Zentrum für psychische Gesundheit, Psychiatrie-Sanitätsbetrieb Bruneck/www.sb-bruneck.it, (Ärztlicher Direktor Primar Dr. Roger Pycha)
  • 3Kinder-und Jugendneuropsychiatrischer Dienst, Pädiatrie-Sanitätsbetrieb Bozen/www.sbbz.it, (Ärztlicher Direktor Prof. Dr. Klaus Pittschieler)
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. November 2006 (online)

Zusammenfassung

Hohe Prävalenz und Komorbiditätsraten mit oftmals gravierenden psychosozialen Folgen machen die Aufmerksamkeits-Defizit/Hyperaktivitätsstörung (ADHS) bei Kindern, Jugendlichen und Erwachsenen zu einer Herausforderung für Forschung und Krankenversorgung. Zahlreiche Studien sprechen für die Annahme einer dopaminergen fronto-striatalen Informationsverabeitungsstörung ADHS-Betroffener (Störung exekutiver Funktionen). Die Übersichtsarbeit stellt die neurobiochemischen Grundlagen der seit fast einem halben Jahrhundert klinisch erfolgreich angewandten Methylphenidat-Therapie bei der ADHS im Zusammenhang aktueller Forschungsergebnisse dar (MRI, f-MRI, PET, SPECT, Genmapping). Die erhöhte striatale Dopamin-Transporter-Dichte bei ADHS-Methylphenidat-Respondern wird als ein wissenschaftlich konsequentes und brauchbares Arbeitsmodell für die klinische Praxis dargestellt.

Abstract

High prevalence and high co-morbidity rates with frequently aggravating psychosocial problems make the attention-deficit/hyperactivity disorder (ADHD) of children, adolescents and adults an important target for research and healthcare. Recent findings suggest a dopaminergic fronto-striatal information processing deficit in ADHD-patients (executive functions). This review summarizes and presents, in the context of recent studies (MRI, f-MRI, PET, SPECT, Mapping Genes) the neurobiochemical bases of the methylphenidate-therapy, clinically successfully applied since almost one half century by the ADHD. The increased striatal dopamine transporter density by the ADHD-methylphenidate-responder is reported as a scientifically sound and useful clinical working model.

Literatur

  • 1 Conners C K, Eisenberg L. The effects of methylphenidate on symptomatology and learning in disturbed children.  Am J Psychiat. 1963;  120 458-464
  • 2 Millichap J G, Fowler G W. Treatment of “minimal brain dysfunction syndromes”: Selection of drugs for children with hyperactivity and learning disabilities.  Pediatr Clin North Am. 1967;  14 (4) 767-777
  • 3 Barkley R A. A review of stimulant drug research with hyperactive children.  J Child Psychol Psychiatry. 1977;  18 137-165
  • 4 Bradley C. The behavior of children receiving benzedrine.  Am J Psychiat. 1937;  94 577-585
  • 5 Panizzon L. La preparazione di piridil-e piperidil-arilacetonitrili e di alcuni prodotti di trasformazione, pt.1.  Helv Chim Acta. 1944;  27 1748
  • 6 AACAP . Practice Parameter for the Use of Stimulant Medication in the Treatment of Children, Adolescents and Adults.  J of the American Academy for Child and Adolescent Psychiatry. 2002;  41 Suppl.2 26-49
  • 7 Buitelaar J K, Montgomery S A, Zwieten-Boot B J van. Attention deficit hyperactivity disorder: guidelines for investigating efficacy of pharmacological intervention.  Eur Neuropsychopharmacol. 2003;  13 (4) 297-304
  • 8 Swanson J M, Seargent J A, Taylor E, Sonuga-Barke E J, Jensen P S, Cantwell D P. Attention-deficit disorder and hyperkinetic disorder.  Lancet. 1998;  351 (9100) 429-433
  • 9 Wender P H. Attention-deficit hyperactivity disorder in adults.  Psychiatr Clin North Am. 1998;  21 (4) 761-774
  • 10 Spencer T J, Biederman J, Wilens E, Faraone S V. Overview and Neurobiology of Attention-Deficit/Hyperactivity Disorder.  J Clin Psychiatry. 2002;  63 Suppl. 12 3-9
  • 11 Retz W, Pajonk F G, Rösler M. Eine Aufgabe für die psychiatrische Forschung und Krankenversorgung - Die Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) im Erwachsenenalter.  Psychoneuro. 2003;  29 527-531
  • 12 Steinhausen H C. Attention-deficit hyperactivity disorder in a life perspective.  Acta Psychiatr Scand. 2003;  107 (5) 321-322
  • 13 MTA Cooperative Group . 14-Month randomized clinical trial of treatment strategies for attention deficit hyperactivity disorder.  Arch Gen Psychiatry. 1999;  56 1073-1086
  • 14 NIH . National Institutes of Health Consensus Development Conference Statement-Diagnosis and treatment of attention deficit hyperactivity disorder (ADHD).  J Am Acad Child Adolesc Psychiatry. 2000;  39 182-193
  • 15 Pliszka S R, Greenhill L L, Crismon M L, Sedillo A, Carlson C, Conners C K, McCracken J T, Swanson J M, Hughes C W, Llana M E, Lopez M, Toprac M G. The Texas Children's Medication Algorithm Project: report of the Texas Consensus Conference Panel on Medication Treatment of Childhood Attention-Deficit/Hyperactivity Disorder. Part I and II.  J Am Acad Child Adolesc Psychiatry. 2000;  39 (7) 908-927
  • 16 Vitiello B. Long-term effects of stimulant medication on the brain: possible relevance to the treatment of attention deficit hyperactivity disorder.  J Child Adolesc Psychopharmacol. 2001;  11 (1) 25-34
  • 17 Döpfner M, Lehmkuhl G. Evidenzbasierte Therapie von Kindern und Jugendlichen mit Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS).  Prax Kinderpsychol Kinderpsychiatr. 2002;  51 (6) 419-440
  • 18 Leonard B E, McCartan D, White J, King D J. Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects.  Hum Psychopharmacol. 2004;  19 (3) 151-180
  • 19 Biederman J, Spencer T, Wilens T. Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder.  Int J Neuropsychopharmacol. 2004;  7 (1) 77-97
  • 20 Santosh P J, Taylor E. Stimulant drugs.  Eur Child Adolesc Psychiatry. 2000;  9 (1) 27-43
  • 21 Spencer T J. ADHD treatment across the life cycle.  J Clin Psychiatry. 2004;  65 Suppl. 3 22-26
  • 22 Wilens T E, Spencer T J, Biederman J. A review of the pharmacotherapy of adults with attention-deficit/hyperactivity disorder.  J Atten Disord. 2002;  5 189-202
  • 23 Wilens T E. Drug therapy for adults with attention-deficit hyperactivity-disorder.  Drugs. 2003;  63 (22) 2395-2411
  • 24 Fröhlich J, Lehmkuhl G. Die medikamentöse Behandlung der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung im Erwachsenenalter.  Nervenarzt. 2004;  75 1074-1082
  • 25 Pliszka S R, McCracken J T, Mass J W. Catecholamines in attention deficit hyperactivity disorder: current perspectives.  J Am Acad Child Adolesc Psychiatry. 1996;  35 (3) 264-272
  • 26 Biederman J, Faraone S V. Current concepts on the neurobiology of Attention-Deficit/Hyperactivity Disorder.  J Atten Disord. 2002;  6 Suppl. 1 7-16
  • 27 Davids E, Zhang K, Tarazi F I, Baldessarini R J. Animals models of attention-deficit/hyperactivity disorder.  Brain Res Rev. 2003;  42 (1) 1-21
  • 28 Pliszka S R. The neuropsychopharmacology of attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2005;  57 (11) 1385-1390
  • 29 Oades R D, Sadile A G, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen E B, Ruocco L A, Russell V A. The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles.  Dev Sci. 2005;  8 (2) 122-131
  • 30 Schachar R, Tannock R, Mariott M, Logan G. Deficient inhibitory control in attention deficit hyperactivity disorder.  J Abnorm Child Psychol. 1995;  23 (4) 411-437
  • 31 Barkley R A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD.  Psychol Bull. 1997;  121 (1) 65-94
  • 32 Pineda D, Ardila A, Rosselli M, Cadavid C, Mancheno S, Mejia S. Executive dysfunction in children with attention deficit hyperactivity disorder.  Int J Neurosci. 1998;  96 (3 - 4) 177-196
  • 33 Swanson J M. Role of executive function in ADHD.  J Clin Psychiatry. 2003;  64 Suppl. 14 35-39
  • 34 Sonuga-Barke E J. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways.  Biol Psychiatry. 2005;  57 (11) 1231-1238
  • 35 Posner M I, Dehaene S. Attentional networks.  Trends Neurosci. 1994;  17 (2) 75-79
  • 36 Afifi A K. Basal ganglia: functional anatomy and physiology. Part I.  J Child Neurol. 1994;  9 (4) 249-260
  • 37 Masterman D L, Cummings J L. Frontal-subcortical circuits: the anatomic basis of executive, social and motivated behaviors.  J Psychopharmacol. 1997;  11 (2) 107-114
  • 38 Saint-Cyr J A. Frontal-striatal circuit functions: context, sequence, and consequence.  J Int Neuropsychol Soc. 2003;  9 (1) 103-127
  • 39 Kaiser S, Mundt C, Weisbrod M. Exekutive Kontrollfunktionen und Neuropsychiatrische Erkrankungen - Perspektiven für Forschung und Klinik.  Fortschr Neurol Psychiatr. 2005;  73 438-450
  • 40 Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET.  Science. 1986;  231 (4735) 258-261
  • 41 Kessler R M, Whetsell W O, Ansari M S, Votaw J R, de Paulis T, Clanton J A, Schmidt D E, Mason N S, Manning R G. Identification of extrastriatal dopamine D2-receptors in post mortem human brain with (125I) epidepride.  Brain Res. 1993;  609 (1 - 2) 237-243
  • 42 Williams G V, Goldmann-Rakic P S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.  Nature. 1995;  376 (6541) 572-575
  • 43 Hall H, Farde L, Halldin C, Hurd Y L, Pauli S, Sedvall G. Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using (125I)epidepride.  Synapse. 1996;  23 (2) 115-123
  • 44 Volkow N D, Fowler J S, Gatley S J, Logan J, Wang G J, Ding Y S, Dewey S. PET evaluation of the dopamine system of the human brain.  J Nucl Med. 1996;  37 (7) 1242-1256
  • 45 Gerlach M, Gsell W, Kornhuber J, Jellinger K, Krieger V, Pantucek F, Vock R, Riederer P. A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome.  Brain Res. 1996;  741 (1 - 2) 142-152
  • 46 Mega M S, Cummings J L. Frontal-subcortical circuits and neuropsychiatric disorders.  J Neuropsychiatry Clin Neurosci. 1994;  6 (4) 358-370
  • 47 Arnsten A F. Catecholamine regulation of the prefrontal cortex.  J Psychopharmacol. 1997;  11 (2) 151-162
  • 48 Nieoullon A. Dopamine and the regulation of cognition and attention.  Prog Neurobiol. 2002;  67 (1) 53-83
  • 49 Nieoullon A, Coquerel A. Dopamine: a key regulator to adapt action, emotion, motivation and cognition.  Curr Opin Neurol. 2003;  16 Suppl. 2 3-9
  • 50 Coull J T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.  Prog Neurobiol. 1998;  55 (4) 343-361
  • 51 Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder.  Biol Psychiatry. 1999;  46 (9) 1234-1236
  • 52 Roessner V, Banaschewski T, Uebel H, Becker A, Rothenberger A. Neuronal network models of ADHD - lateralization with respect to interhemispheric connectivity reconsidered.  Eur Child Adolesc Psychiatry. 2004;  13 Suppl. 1 171-179
  • 53 Faraone S V, Biederman J. Neurobiology of attention deficit hyperactivity disorder.  Biol Psychiatry. 1998;  44 (10) 951-958
  • 54 Sieg K G. Neuroimaging and attention deficit disorder. In: Accardo PJ, Blondis TA, Whitman BY, Stein MA (eds). Attention deficits and hyperactivity in children and adults. New York, Basel: Marcel Dekker 2000: 73-118
  • 55 Castellanos F X, Lee P P, Sharp W, Jeffries N O, Greenstein D K, Clasen L S, Blumenthal J D, James R S, Ebens C L, Walter J M, Zijdenbos A, Evans A C, Giedd J N, Rapoport J L. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder.  JAMA. 2002;  288 (14) 1740-1748
  • 56 Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies?.  Ment Retard Dev Disabil Res Rev. 2003;  9 (3) 184-195
  • 57 Roth R M, Saykin A J. Executive dysfunction in attention-deficit/hyperactivity disorder: cognitive and neuroimaging findings.  Psychiatr Clin North Am. 2004;  27 (1) 83-96
  • 58 Bush G, Valera E M, Seidman L J. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions.  Biol Psychiatry. 2005;  57 (11) 1273-1284
  • 59 Seidman L J, Valera E M, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2005;  57 (11) 1263-1272
  • 60 Willis W G, Weiler M D. Neural substrates of childhood attention-deficit/hyperactivity disorder: electroencephalographic and magnetic resonance imaging evidence.  Dev Neuropsychol. 2005;  27 (1) 135-182
  • 61 Castellanos F X, Giedd J N, Marsh W L, Hamburger S D, Vaituzis A C, Dickstein D B, Sarfatti S E, Vauss Y C, Snell J W, Lange N, Kaysen D, Krain A L, Ritchie G F, Rajapakse J C, Rapoport J L. Quantitative brain magnetic resonance imaging in attention deficit hyperactivity disorder.  Arch Gen Psychiatry. 1996;  53 (7) 607-616
  • 62 Casey B J, Castellanos F X, Giedd J N, Marsh W L, Hamburger S D, Schubert A B, Vauss Y C, Vaituzis A C, Dickstein D B, Sarfatti S E, Rapoport J L. Implication of right frontostriatal circuitry in response inhibition on attention deficit hyperactivity disorder.  J Am Acad Child Adolesc Psychiatry. 1997;  36 (3) 374-383
  • 63 Hynd G W, Semrud-Clikeman M, Lorys A R, Novey E S, Elipopulus D, Lyytinen H. Corpus Callosum morphology in attention deficit hyperactivity disorder: morphometric analysis of MRI.  J Learn Disabil. 1991;  24 (3) 141-146
  • 64 Semrud-Clikeman M, Filipek P A, Biederman J, Steingard R, Kennedy D, Renshaw P, Bekken K. Attention deficit hyperactivity disorder: Magnetic resonance imaging morphometric analysis of the corpus callosum. J.  Am Acad Child Adolesc Psychiatry. 1994;  33 (6) 875-881
  • 65 Giedd J N, Castellanos F X, Casey B J, Kozuch P, King A C, Hamburger S D, Rapoport J L. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder.  Am J Psychiatry. 1994;  151 (5) 665-669
  • 66 Baumgardner T L, Singer H S, Denkla M B, Rubin M A, Abrams M T, Colli M J, Reiss A L. Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder.  Neurology. 1996;  47 (2) 477-482
  • 67 Hynd G W, Hern C L, Novey E S, Eliopulus D, Marshall R, Gonzales J J, Voeller K K. Attention deficit hyperactivity disorder and asymmetry of the caudate nucleus.  J Child Neurol. 1993;  8 (4) 339-347
  • 68 Aylward E M, Reiss A H, Reader M J, Singer H S, Brown J E, Denckla M B. Basal ganglia volumes in children with attention-deficit hyperactivity disorder.  J Child Neurol. 1996;  11 (2) 112-115
  • 69 Overmeyer S, Bullmore E T, Suckling J, Simmons A, Williams S C, Santosh P J, Taylor E. Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network.  Psychol Med. 2001;  31 (8) 1425-1435
  • 70 Mostofsky S H, Reiss A L, Lockhart P, Denckla M B. Evaluation of cerebellar size in attention-deficit/hyperactivity disorder.  J Child Neurol. 1998;  13 (9) 434-439
  • 71 Berquin P C, Giedd J N, Jacobson L K, Hamburger S D, Krain A L, Rapoport J L, Castellanos F X. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study.  Neurology. 1998;  50 (4) 1087-1093
  • 72 Castellanos F X, Giedd J N, Berquin P C, Walter J M, Sharp W, Tran T, Vaituzis A C, Blumenthal J D, Nelson J, Bastain T M, Zijdenbos A, Evans A C, Rapoport J L. Quantitative brain magnetic resonance imaging in girl with attention-deficit/hyperactivity disorder.  Arch Gen Psychiatry. 2001;  58 (3) 289-295
  • 73 Mostofsky S H, Cooper K L, Kates W R, Denckla M B, Kaufmann W E. Smaller prefrontal and premotor volumes in boys with attention deficit/hyperactivity disorder.  Biol Psychiatry. 2002;  52 (8) 785-794
  • 74 Schrimsher G W, Billingsley R L, Jackson E F, Moore B D. Caudate nucleus volume asymmetry predicts attention-deficit/hyperactivity disorder (ADHD) symptomatology in children.  J Child Neurol. 2002;  17 (12) 877-884
  • 75 Sowell E R, Thompson P M, Welcome S E, Henkenius A L, Toga A W, Peterson B S. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder.  The Lancet. 2003;  362 (9397) 1699-1707
  • 76 Pueyo R, Maneru C, Junque C, Vendrell P, Pujol J, Mataro M, Estevez-Gonzalez A, Garcia-Sanchez C. Quantitative Signal Intensity Measures on Magnetic Resonance Imaging in Attention-Deficit Hyperactivity Disorder.  Cogn Behav Neurol. 2003;  16 (1) 75-81
  • 77 Bussing R, Grudnik J, Mason D, Wasiak M, Leonard C. ADHD and conduct disorder: an MRI study in a community.  World J Biol Psychiatry. 2002;  3 (4) 216-220
  • 78 Hill D E, Yeo R A, Campbell R A, Hart B, Vigil J, Brooks W. Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children.  Neuropsychology. 2003;  17 (3) 496-506
  • 79 Durston S, Hulshoff Pol H E, Schnack H G, Buitelaar J K, Steenhuis M P, Minderaa R B, Kahn R S, Engeland H van. Magnetic Resonance Imaging of Boys with Attention-Deficit/Hyperactivity Disorder and Their Unaffected Siblings.  J Am Acad Child Adolesc Psychiatry. 2004;  43 (3) 332-340
  • 80 Bush G, Frazier J A, Rauch S L, Seidmann L J, Whalen P J, Jenike M A, Rosen B R, Biederman J. Anterior cingulate cortex dysfunction in attention deficit hyperactivity disorder revealed by fMRI and the Continuing Stroop.  Biol Psychiatry. 1999;  45 (12) 1542-1552
  • 81 Rubia K, Overmeyer S, Taylor E, Brammer M, Williams S C, Simmons A, Bullmore E T. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI.  Am J Psychiatry. 1999;  156 (6) 891-896
  • 82 Vaidya C J, Austin G, Kirkorian G, Ridlehuber H W, Desmond J E, Glover G H, Gabrieli J D. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study.  Proc Natl Acad Sci USA. 1998;  95 (24) 14 494-14 499
  • 83 Teicher M H, Anderson C M, Polcari A, Glod C A, Mass L C, Renshaw P F. Functional deficits in basal ganglia of children with attention deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry.  Nat Med. 2000;  6 (4) 470-473
  • 84 Durston S, Tottenham N T, Thomas K M, Davidson M C, Egisti I M, Yang Y, Ulug A M, Casey B J. Differential pattern of striatal activation in young children with and without ADHD.  Biol Psychiatry. 2003;  53 (10) 871-878
  • 85 Zang Y F, Jin Z, Weng X C, Zhang Y W, Yang L, Wang Y F, Seidman L J, Faraone S V. Functional MRI in attention-deficit hyperactivity disorder: Evidence for hypofrontality.  Brain Dev. 2005;  27 (8) 544-550
  • 86 Rubia K, Smith A B, Brammer M J, Toone B, Taylor E. Abnormal brain activation during inhibition and error detection in medication-naïve adolescents with ADHD.  Am J Psychiatry. 2005;  162 (6) 1067-1075
  • 87 Zametkin A J, Nordahl T E, Gross M, King A C, Semple W E, Rumsey J, Hamburger S, Cohen R M. Cerebral glucose metabolism in adults with hyperactivity of childhood onset.  N Eng J Med. 1990;  323 (20) 1361-1366
  • 88 Zametkin A J, Liebenauer L L, Fitzgerald G A, King A C, Minkunas D V, Herscovitch P, Yamada E M, Cohen R M. Brain metabolism in teenagers with attention deficit hyperactivity disorder.  Arch Gen Psychiatry. 1993;  50 (5) 333-340
  • 89 Ernst M, Zametkin A J, Matochik J A, Jons P H, Cohen R M. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A (fluorine-18) Fluorodopa positron emission tomographic study.  J Neurosci. 1998;  18 (15) 5901-5907
  • 90 Schweitzer J B, Faber T, Kilts C D, Votaw J, Hoffmann J M, Tune L. Regional cerebral blood flow during repeated exposure to vigilance task in adults with attention deficit hyperactivity disorder (Abstract).  Soc Neurosci. 1995;  21 1926
  • 91 Mattay V S, Bermann K F, Ostrem J L, Esposito G, Horn J D van, Bigelow L B, Weinberger D R. Dextroamphetamine enhances “neural network-specific” physiological signals: A positron-emission tomography rCBF study.  J Neurosci. 1996;  16 (15) 4816-4822
  • 92 Schweitzer J B, Lee D O, Hanford R B, Tagamets M A, Hoffman J M, Grafton S T, Kilts C D. A positron emission tomography study of methylphenidate with ADHD. Alterations in resting blood flow and predicting treatment response.  Neuropsychopharmacology. 2003;  28 (5) 967-973
  • 93 Lou H C, Rosa P, Pryds O, Karrebaek H, Lunding J, Cumming P, Gjedde A. ADHD: increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow.  Dev Med Child Neurol. 2004;  46 (3) 179-183
  • 94 Schweitzer J B, Lee D O, Hanford R B, Zink C F, Ely T D, Tagamets M A, Hoffman J M, Grafton S T, Kilts C D. Effect of methylphenidate on executive functioning in adults with attention deficit/hyperactivity disorder: normalization of behavior but not related brain activity.  Biol Psychiatry. 2004;  56 (8) 597-606
  • 95 Lou H C, Henriksen L, Bruhn P. Focal cerebral hypoperfusion in children with dysphoria and/or attention deficit disorder.  Arch Neurol. 1984;  41 (8) 825-829
  • 96 Lou H C, Henriksen L, Bruhn P. Focal cerebral dysfunction in developmental learning disabilities.  Lancet. 1990;  335 (8680) 8-11
  • 97 Lou H C, Henriksen L, Bruhn P, Borner H, Nielsen J B. Striatal dysfunction in attention deficit and hyperkinetic disorder.  Arch Neurol. 1989;  46 (1) 48-52
  • 98 Sieg K G, Gaffney G R, Preston D F, Hellings J A. SPECT brain imaging abnormalities in attention deficit hyperactivity disorder.  Clin Nucl Med. 1995;  20 (1) 55-60
  • 99 Langleben D D, Austin G, Krikorian G, Ridlehuber H W, Goris M L, Strauss H W. Interhemispheric asymmetry of regional blood flow in prepubescent boys with attention deficit hyperactivity disorder.  Nucl Med Commun. 2001;  22 (12) 1333-1340
  • 100 Kim B N, Lee J S, Cho S C, Lee D S. Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder.  Yonsei Med J. 2001;  42 (1) 19-29
  • 101 Langleben D D, Acton P D, Austin G, Elman I, Krikorian G, Monterosso J R, Portnoy O, Ridlehuber H W, Strauss H W. Effects of Methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit/hyperactivity disorder.  J Nucl Med. 2002;  43 (12) 1624-1629
  • 102 Kim B N, Lee J S, Shin M S, Cho S C, Lee D S. Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical mapping analysis.  Eur Arch Psychiatry Clin Neurosci. 2002;  252 (5) 219-225
  • 103 Kaya G C, Pekcanlar A, Bekis R, Ada E, Miral S, Emiroglu N, Durak H. Technetium-99mHMPAO brain SPECT in children with attention deficit/hyperactivity disorder.  Ann Nucl Med. 2002;  16 (8) 527-531
  • 104 Rohde L A, Roman T, Szobot C, Cunha R D, Hutz M H, Biederman J. Dopamine transporter gene, response to methylphenidate and cerebral blood flow in attention deficit/hyperactivity disorder.  Synapse. 2003;  48 (2) 87-89
  • 105 Lorberboym M, Watemberg N, Nissenkorn A, Nir B, Lerman-Sagie T. Technetium 99 m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress to children and adolescents with pure versus comorbid attention deficit/hyperactivity disorder (ADHD).  J Child Neurol. 2004;  19 (2) 91-96
  • 106 Oner O, Oner P, Aysev A, Kucuk O, Ibis E. Regional cerebral blood flow in children with ADHD: changes with age.  Brain Dev. 2005;  27 (4) 279-285
  • 107 Dougherty D D, Bonab A A, Spencer T J, Rauch S L, Madras B K, Fischman A J. Dopamine transporter density in patients with attention deficit hyperactivity disorder.  Lancet. 1999;  354 (9196) 2132-2133
  • 108 Krause K H, Dresel S H, Krause J, Kung H F, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography.  Neurosci Lett. 2000;  285 (2) 107-110
  • 109 Dresel S, Krause J, Krause K H, la Fougere C, Brinkbaumer K, Kung H F, Hahn K, Tatsch K. Attention deficit hyperactivity disorder: binding of 99mTC-Trodat-1 to the dopamine transporter before and after methylphenidate treatment.  Eur J Nucl Med. 2000;  27 (10) 1518-1524
  • 110 Dyck C H van, Quinlan D M, Cretella L M, Staley J K, Malison R T, Baldwin R M, Seibl J P, Innis R B. Unaltered Dopamine Transporter Availability in Adult Attention Deficit Hyperactivity Disorder.  Am J Psychiatry. 2002;  159 (2) 309-312
  • 111 Cheon K A, Ryu Y H, Kim Y K, Namkoong K, Kim C H, Lee J D. Dopamine transporter density in the basal ganglia assessed with (123I) IPT SPET in children with attention-deficit/hyperactivity disorder.  Eur J Nucl Med Mol Imaging. 2003;  30 (2) 306-311
  • 112 la Fougere C. (99mTC)Trodat-1: Szintigraphische Darstellung des Dopamintransporters im Gehirn bei gesunden Kontrollen, Patienten mit schizophrenen Störungen und Patienten mit Aufmerksamkeitsdefizit/Hyperaktivitätsstörungen. München: Dissertation an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München-Klinik und Polyklinik für Nuklearmedizin/Ludwig-Maximilians-Universität 2003: 1-76
  • 113 la Fougere C. US-Society of Nuclear Medicine Pressemitteilung der Jahrestagung Philadelphia, Pennsylvania: Controlling ADHD: German Scientists Use SPECT Imaging to Predict Patient Response to Drug Therapy. 2004: Posted June 22
  • 114 Rosa Neto P, Lou H, Cumming P, Pryds O, Gjedde A. Methyhlphenidate-evoced potentiation of extracellular dopamine in the brain of adolescents with premature birth: correlation with attentional deficit.  Ann NY Acad Sci. 2002;  965 434-439
  • 115 Vles J S, Feron F J, Hendriksen J G, Jolles J, Kroonenburgh M J van, Weber W E. Methylphenidate Down-Regulates the Dopamine Receptor and Transporter System in Children with Attention Deficit Hyperkinetic Disorder (ADHD).  Neuropediatrics. 2003;  34 (2) 77-80
  • 116 Krause J, la Fougere C, Krause K H, Ackenheil M, Dresel S H. Influence of striatal dopamine transporter availability on the response to methylphenidate in adult patients with ADHD.  Eur Arch Psychiatry Clin Neurosci. 2005 Aug 17;  255 (6) 428-431
  • 117 Rosa-Neto P, Lou H C, Cumming P, Pryds O, Karrebek H, Lunding J, Gjedde A. Methylphenidate-evoked changes in striatale dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder.  Neuroimage. 2005;  25 (3) 868-876
  • 118 Feron F J, Hendriksen J G, Kroonenburg M J van, Blom-Coenjaerts C, Kessels A G, Jolles J, Weber W E, Vles J S. Dopamine Transporter in Attention-Deficit Hyperactivity Disorder Normalizes After Cessation of Methylphenidate.  Pediatr Neurol. 2005;  33 (3) 179-183
  • 119 Patrick K S, Caldwell R W, Ferris R M, Breese G R. Pharmacology of the enantiomers of threo-methylphenidate.  J Pharmacol Exp Ther. 1987;  241 (1) 152-158
  • 120 Ding Y S, Fowler J S, Volkow N D, Dewey S L, Wang G J, Logan J, Gatley S J, Pappas N. Chiral drugs: comparison of the pharmacokinetics of [11C] d-threo and L-threo-methylphenidate in the human and baboon brain.  Psychopharmacology. 1997;  131 (1) 71-78
  • 121 Volkow N D, Fowler J S, Wang G, Ding Y, Gatley S J. Mechanism of action of methylphenidate: insights from PET imaging studies.  J Atten Disord. 2002;  6 Suppl. 1 31-43
  • 122 Capp P K, Pearl P L, Conlon C. Methylphenidate HCL: therapy for attention-deficit hyperactivity disorder.  Expert Rev Neurother. 2005;  5 (3) 325-331
  • 123 Nielsen J A, Chapin D S, Moore K E. Differential effects of d-amphetamine, beta-phenylethylamine, cocaine and methylphenidate on the rate of dopamine synthesis in terminals of nigrostriatal and mesolimbic neurons and the efflux of dopamine metabolites into cerebroventricular perfusates of rats.  Life Sci. 1983;  33 (19) 1889-1907
  • 124 Schweri M M, Skolnick P, Rafferty M F, Rice K C, Janowsky A J, Paul S M. (3H)Threo-(+/-)-methylphenidate binding to 3,4-dihydroxyphenyl ethylamine uptake sites in corpus striatum: correlation with the stimulant properties of ritalinic acid esters.  J Neurochem. 1985;  45 (2) 1062-1070
  • 125 Gatley S J, Pan D, Chen R, Chaturvedi G, Ding Y X. Affinities of methylphenidate derivates for dopamine, norepinephrine and serotonin transporters.  Life Sci. 1996;  58 (12) 231-239
  • 126 Kuczenski R, Segal D S. Effects of methylphenidate on extracellular dopamine, serotonin and norepinephrine: comparison with amphetamine.  J Neurochem. 1997;  68 (5) 2032-2037
  • 127 Volkow N D, Wang G J, Fowler J S, Gatley S J, Logan J, Ding Y S, Hitzemann R, Pappas N. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate.  Am J Psychiatry. 1998;  155 (10) 1325-1331
  • 128 Volkow N D, Wang G, Fowler J S, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley S J, Gifford A, Franceschi D. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.  J Neurosci. 2001;  21 (2): RC121 1-5
  • 129 Volkow N D, Wang G J, Fowler J S, Logan J, Franceschi D, Maynard L, Ding Y S, Gatley S J, Gifford A, Zhu W, Swanson J M. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications.  Synapse. 2002;  43 (3) 181-187
  • 130 Iversen L L. Role of transmitter uptake mechanism in synaptic neurotransmission.  Br J Pharmacol. 1971;  41 (4) 571-591
  • 131 Shimada S, Kitayama S, Lin C L, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA.  Science. 1991;  254 (5031) 576-578
  • 132 Kuhar M J. Recent biochemical studies of dopamine transporter - a CNS drug target.  Life Sci. 1998;  62 (17 - 18) 1573-1575
  • 133 Schenk J O. The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate.  Prog Drug Res. 2002;  59 111-131
  • 134 Bannon M J. The dopamine transporter: role in neurotoxiticity and human disease.  Toxicol Appl Pharmacol. 2005;  204 (3) 355-360
  • 135 Spencer T J, Biederman J, Madras B K, Faraone S V, Dougerty D D, Bonab A A, Fischman A J. In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter.  Biol Psychiatry. 2005;  57 (11) 1293-1300
  • 136 Amara S G, Kuhar M J. Neurotransmitter transporters: recent progress.  Annu Rev Neurosci. 1993;  16 73-93
  • 137 Kung H F, Kim H J, Kung M P, Meegalla S K, Plossl K, Lee H K. Imaging of dopamine transporters in human brain with technetium-99 m TRODAT-1.  Eur J Nucl Med. 1996;  23 (11) 1527-1530
  • 138 Dresel S, Kung M P, Plossl K, Meegalla S K, Kung H F. Pharmacological effects of dopaminergic drugs on in vivo binding of (99 m Tc) Trodat-1 to the central dopamine transporters in rats.  Eur J Nucl Med. 1998;  25 (1) 31-39
  • 139 Mozley P D, Stubbs J B, Plossl K, Dresel S H, Barraclough E D, Alavi A, Araujo L I, Kung H F. Biodistribution and dosymetry of Trodat-1: a technetium-99 m tropane for imaging dopamine transporters.  J Nucl Med. 1998;  39 (12) 2069-2076
  • 140 Kugaya A, Fujita M, Innis R B. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders.  Ann Nucl Med. 2000;  14 (1) 1-9
  • 141 Piccini P P. Dopamine transporter: basic aspects and neuroimaging.  Mov Disord. 2003;  18 Suppl. 7 3-8
  • 142 Solanto M V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration.  Behav Brain Res. 1998;  94 (1) 127-152
  • 143 Solanto M V. Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research.  Behav Brain Res. 2002;  130 (1 - 2) 65-71
  • 144 Krause K H, Dresel S H, Krause J, la Fougere C, Ackenheil M. The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder.  Neurosci Biobehav Rev. 2003;  27 (7) 605-613
  • 145 Cook Jr E H, Stein M A, Krasowsky M D, Cox N J, Olkon D M, Kieffer J E, Leventhal B L. Association of attention deficit disorder and the dopamine transporter gene.  Am J Hum Genet. 1995;  56 (4) 993-998
  • 146 Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M. Confirmation of association between attention deficit/hyperactivity disorder and a dopamine transporter polymorphism.  Mol Psychiatry. 1997;  2 (4) 311-313
  • 147 Waldman I D, Rowe D C, Abramowitz A, Kozel S T, Mohr J H, Sherman S L, Cleveland H H, Sanders M L, Gard J M, Stever C. Association and linkage of the dopamine transporter gene and attention deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity.  Am J Hum Genet. 1998;  63 (6) 1767-1776
  • 148 Daly G, Hawi Z, Fitzgerald M, Gill M. Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children.  Mol Psychiatry. 1999;  4 (2) 192-196
  • 149 Roman T, Rohde L A, Hutz M H. Polymorphism of the dopamine gene: influence response to methylphenidate in attention deficit-hyperactivity disorder.  Am J Pharmacogenomics. 2004;  4 (2) 83-92
  • 150 Kent L. Recent advances in the genetics of attention deficit hyperactivity disorder.  Curr Psychiatr Rep. 2004;  6 (2) 143-148
  • 151 Bobb A J, Castellanos F X, Addington A M, Rapoport J L. Molecular genetic studies of ADHD: 1991 to 2004.  Am J Med Genet B Neuropsychiatr Genet. 2005;  132 (1) 109-125
  • 152 Cheon K A, Ryu Y H, Kim J W, Cho D Y. The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention-deficit hyperactivity disorder: relating to treatment response to methylphenidate.  Eur Neuropsychopharmacol. 2005;  15 (1) 95-101
  • 153 Mill J, XU X, Ronald A, Curran S, Price T, Knight J, Craig I, Sham P, Plomin R, Aherson P. Quantitative trait locus analysis of candidate gene alleles associated with attention-deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25 and 5HT1B.  Am J Med Genet B Neuropsychiatr Genet. 2005;  133 (1) 68-73
  • 154 Feng Y, Wigg K G, Makkar R, Ickowicz A, Pathare T, Tannock R, Roberts W, Malone M, Kennedy J L, Schachar R, Barr C L. Sequence variation in the 3'-untranslateted region of the dopamine transporter gene and attention-deficit hyperactivity disorder (ADHD).  Am J Med Genet B Neuropsychiatr Genet. 2005;  139 (1) 1-6
  • 155 McGough J J. Attention-deficit/hyperactivity disorder pharmacogenomics.  Biol Psychiatry. 2005;  57 (11) 1367-1373
  • 156 Swanson J M, Volkow N D. Serum and brain concentrations of methylphenidate: implications for use and abuse.  Neurosci Biobehav Rev. 2003;  27 (7) 615-621
  • 157 Volkow N D, Wang G J, Fowler J S, Ding Y S. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2005;  57 (11) 1410-1415
  • 158 O'Donell P. Dopamine gating of forebrain neural ensembles.  Eur J Neurosci. 2003;  17 (3) 429-435
  • 159 Kiyatkin E A, Rebec G V. Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats.  J Neurophysiol. 1996;  75 (1) 142-153
  • 160 Koob G F. Hedonic valence, dopamine and motivation.  Mol Psychiatry. 1996;  1 (3) 186-189
  • 161 Jonkman L M, Kemmer C, Verbaten M N, Koelega H S, Camferman G, Gaag R J, Buitelaar J K, Engeland H van. Effects of methylphenidate on event related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks.  Biol Psychiatry. 1997;  41 (6) 690-702
  • 162 Moll G H, Heinrich H, Trott G E, Wirth S, Rothenberger A. Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate.  Neurosci Lett. 2000;  284: (1 - 2) 121-125
  • 163 Moll G H, Heinrich H, Rothenberger A. Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention deficit hyperactivity disorder.  Acta Psych Scand. 2003;  107 (1) 69-72
  • 164 Hawk Jr L W, Yartz A R, Pelham Jr W E, Lock T M. The effects of methylphenidate on prepulse inhibition during attend and ignored prestimuli among boys with attention-deficit hyperactivity disorder.  Psychopharmacology (Berl). 2003;  165 (2) 118-127
  • 165 Shafritz K M, Marchione K E, Gore J C, Shaywitz S E, Shaywitz B A. The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder.  Am J Psychiatry. 2004;  161 (11) 1190-1197
  • 166 Carey M B, Diewald L M, Esposito F J, Pellicano M P, Gironi Carnevale U A, Sergeant J A, Papa M, Sadile A G. Differential distribution, affinity and plasticity of dopamine D1 and D2 receptors in the target sites of the mesolimbic system in an animal model of ADHD.  Behav Brain Res. 1998;  94 (1) 173-185
  • 167 Ilgin N, Senol S, Gucuyener K, Gokcora N, Sener S. Is increased D2 receptor availability associated with response to stimulant medication in ADHD.  Dev Med Child Neurol. 2001;  43 (11) 755-760
  • 168 Seeman P, Madras B. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis.  Behav Brain Res. 2002;  130 (1 - 2) 79-83
  • 169 Volkow N D, Fowler J S, Wang G J. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans.  J Psychopharmacol. 1999;  13 (4) 337-345
  • 170 Arnsten A F, Dudley A G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoreceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder.  Behav Brain Funct. 2005;  1 (1) 2
  • 171 Volkow N D, Swanson J M. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD.  Am J Psychiatry. 2003;  160 (11) 1909-1918
  • 172 Federici M, Geracitano R, Bernardi G, Mercuri N B. Actions of methylphenidate on dopaminergic neurons of the ventral midbrain.  Biol Psychiatry. 2005;  57 (4) 361-365
  • 173 Elliott J M, Beveridge T J. Psychostimulants and monoamine transporters: upsetting the balance.  Curr Opin Pharmacol. 2005;  5 (1) 94-100
  • 174 Viggiano D, Vallone D, Sadile A. Dysfunctions in dopamine and ADHD: evidence from animals and modelling.  Neural Plast. 2004;  11 (1 - 2) 97-114
  • 175 Shi W X, Pun C L, Zhou Y. Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons.  Neuropsychopharmacology. 2004;  29 (12) 2160-2167
  • 176 Madras B K, Miller G M, Fischman A J. The dopamine transporter and attention-deficit/hyperactivity disorder.  Biol Psychiatry. 2005;  57 (11) 1397-1409
  • 177 Dyck C H van, Saibyl J P, Malison R T, Laruelle M, Wallace E, Zoghbi S S, Zea-Ponce Y, Baldwin R M, Charney D S, Hoffer P B. Age related decline in striatal dopamine transporter binding with iodine-beta-CIT SPECT.  J Nucl Med. 1995;  36 (7) 1175-1181
  • 178 Mozley P D, Kim H J, Gur R C, Tatsch K, Muenz L R, McElgin W T, Kung M P, Mu M, Myers A M, Kung H F. Iodine-(123i)IPT SPECT imaging of CNS dopamine transporters: non linear effect of normal aging on striatal uptake values.  J Nucl Med. (1996)-37;  (12) 1965-1970
  • 179 Meng S Z, Ozawa Y, Itoh M, Takashima S. Developmental and age related changes of dopamine transporters, and dopamine D1 and D2 receptors in human basal ganglia.  Brain Res. 1999;  843 (1 - 2) 136-144
  • 180 Volkow N D, Ding Y S, Fowler J S, Wang G J, Logan J, Gatley S J, Hitzemann R, Smith G, Fields S D, Gur R. Dopamine transporter decrease with age.  J Nucl Med. 1996;  37 (4) 554-559
  • 181 Dyck C H van, Seibl J P, Malison R T, Laruelle M, Zoghbi S S, Baldwin R M, Innis R B. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries.  Am J Geriatr Psychiatry. 2002;  10 (1) 36-46
  • 182 Erixon-Lindroth N, Farde L, Wahlin T B, Sovago J, Halldin C, Backman L. The role of the striatal dopamine transporter in cognitive aging.  Psychiatry Res. 2005;  138 (1) 1-12
  • 183 Polanczyk G, Zeni C, Genro J P, Roman T, Hutz M H, Rohde L A. Attention-deficit/hyperactivity disorder: advancing on pharmacogenomics.  Pharmacogenomics. 2005;  6 (3) 225-234
  • 184 Purper-Quakil D, Wohl M, Mouren M C, Verpillat P, Ades J, Gorwood P. Meta-analysis of family-based association between the dopamine transporter gene and attention deficit hyperactivity disorder.  Psychiatr Genet. 2005;  15 (1) 53-59
  • 185 Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity.  Biol Psychiatry. 2005;  57 (3) 229-238
  • 186 Janowsky A, Mah C, Johnson R A, Cunningham C L, Philipps T J, Crabbe J C, Eshleman A J, Belknap J K. Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice.  J Pharmacol EXP Ther. 2001;  298 (2) 634-643
  • 187 Buck K, Lischka T, Dorow J, Crabbe J. Mapping quantitative trait loci that regulate sensitivity and tolerance to quinpirole, a dopamine mimetic selective for D(2)/D(3) receptors.  Am J Med Genet. 2000;  96 (5) 696-705
  • 188 Greenwood T A, Kelose J R. Promotor and intronic variants affect the transcriptional regulation of the human dopamine transporter gene.  Genomics. 2003;  82 (5) 511-520
  • 189 Biederman J. Attention-deficit/hyperactivity disorder: a selective overview.  Biol Psychiatry. 2005;  57 (11) 1215-1220
  • 190 Birnbaum H G, Kessler R C, Lowe S W, Secnik K, Greenberg P E, Leong S A, Swensen A R. Costs of attention deficit-hyperactivity disorder (ADHD) in the US: excess costs of persons with ADHD and their family members in 2000.  Curr Med Res Opin. 2005;  21 (2) 195-206
  • 191 Nigg J T, Willcutt E G, Doyle A E, Sonuga-Barke E J. Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes?.  Biol Psychiatry. 2005;  57 (11) 1224-1230

Dr. Markus Huber

Zentrum für psychische Gesundheit · Psychiatrie-Sanitätsbetrieb Bruneck

Spitalgasse 11

39031 Bruneck/Südtirol

Italien

eMail: markus.huber@sb-bruneck.it