Subscribe to RSS
DOI: 10.1055/s-2006-926260
Convenient Synthesis of Isocyanate and Isothiocyanate-Substituted Boron Dipyrromethene Dyes and Derivatives
Publication History
Publication Date:
06 February 2006 (online)
Abstract
Starting from nitro-substituted phenyl rings, the preparation of boron dipyrromethene dyes carrying amino functions was achieved in good yields. Conversion of the p-aminophenyl group to the corresponding isocyanate and isothiocyanate is feasible under mild conditions. Various combinations allow the production of luminescent molecules bearing mono- or disubstituted urea or thiourea substituents. When two adjacent amino functions are present, a simple protocol allows the production of pyridine-indole and dipyridophenazine derivatives. The on/off switching of the fluorescence from the nitro to the amino and further to the urea renders these dyes attractive as fluorescent probes.
Key words
boron - amines - reduction - isocyanate - fluorescence
- 1
Baeyer A. Ber. Dtsch. Chem. Ges. 1871, 4: 555 - 2
Desverne J.-P.Czarnik AW. In Chemosensors of Ion and Molecular Recognition NATO Advanced Study Institute Series C492, Kluwer; Dordrecht: 1997. - 3
Valeur B. In Molecular Fluorescence: Principles and Applications Wiley-VCH; Weiheim: 2002. - 4
Haugland RP. In Handbook of Molecular Probes and Research Products 9th ed.: Molecular Probes, Inc.; Eugene OR: 2002. -
5a
Tsien RY. In Fluorescent and Photochemical Probes of Dynamic Biochemical Signals Inside Living CellsCzarnik AW. American Chemical Society; Washington DC: 1993. p.130-146 -
5b
Minta A.Kao JPY.Tsien RY. J. Biol. Chem. 1989, 264: 8171 -
5c
Zalewski PD.Forbes IJ.Betts WH. Biochem. J. 1993, 296: 403 - 6
Gareis T.Huber C.Wolfbeis OS.Daub J. Chem. Commun. 1997, 1717 - 7
Lakowicz JR. In Topics in Fluorescence Spectroscopy Vol. 1-4: Plenum Press; New York: 1994. -
8a
Kollmannsberger M.Rurack K.Resch-Genger U.Daub J. J. Phys. Chem. A 1998, 102: 10211 -
8b
Rurack K.Kollmannsberger M.Resch-Genger U.Daub J. J. Am. Chem. Soc. 2000, 122: 968 -
8c
Moon SY.Cha NR.Kim YH.Chang S.-K. J. Org. Chem. 2004, 69: 181 -
8d
Turfan B.Akkaya EU. Org. Lett. 2002, 4: 2857 -
8e
Czarnik AW. In Fluorescent Chemosensors for Ion and Molecule Recognition ACS Symposium Series 538, American Chemical Society; Washington DC: 1993. - 9
Lockhart JC. Chemical Sensors in Comprehensive Supramolecular Chemistry Vol 1:Lehn J.-M. Pergamon; New York: 1996. - 10
Gabe Y.Urano Y.Kikuchi K.Kojima H.Nagano T. J. Am. Chem. Soc. 2004, 126: 3357 -
11a
De Silva AP.Gunaratne HQN.Gunnlaugsson T.McCoy CP.Maxwell PRS.Rademacher JT.Rice TE. Pure Appl. Chem. 1996, 68: 1443 -
11b
De Silva AP.Gunaratne HQN.Gunnlaugsson T.Huxley AJM.McCoy CP.Rademacher JT.Rice TE. Chem. Rev. 1997, 97: 1515 - 12
Wan C.-W.Burghart A.Chen J.Bergström F.Johanson LB.-A.Wolford MF.Kim TG.Topp MR.Hochstrasser RM.Burgess K. Chem. Eur. J. 2003, 9: 4430 -
13a
Goze C.Ulrich G.Charbonnière L.Ziessel R. Chem. Eur. J. 2003, 9: 3748 -
13b
Ulrich G.Ziessel R. Synlett 2004, 439 -
13c
Ulrich G.Ziessel R. J. Org. Chem. 2004, 69: 2070 -
13d
Ulrich G.Ziessel R. Tetrahedron Lett. 2004, 45: 1949 -
14a
Boyer JH.Haag AM.Sathyamoorthi G.Soong M.-L.Thangaraj K. Heteroat. Chem. 1993, 4: 39 -
14b
Burghart A.Kim H.Wech MB.Thorensen LH.Reibenspies J.Burgess K. J. Org. Chem. 1999, 64: 7813 -
15a
Azov VA.Diederich F.Lill Y.Hecht B. Helv. Chim. Acta 2003, 86: 2149 -
15b
Li M.Wang H.Zhang X.Zhang H.-S. Spectrochim. Acta, Part A 2004, 60: 987 - 16 Selected data for 7: isolated yield quantitative. 1H NMR (CDCl3): δ = 7.23 (m, 4 H), 2.53 (s, 6 H), 2.30 (q, 4 H, 3
J = 7.5 Hz), 1.31 (s, 6 H), 0.98 (t, 6 H, 3
J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 154.3, 138.9, 138.2, 134.3, 133.6, 133.2, 130.9, 130.0, 129.7, 125.6, 17.2, 14.7, 12.7, 12.0 ppm.
-
20a
Piguet C.Bünzli J.-CG.Bernardinelli G.Hopfgartner G.Williams AF. J. Am. Chem. Soc. 1993, 115: 8197 -
20b
Shavaleev NM.Bell ZR.Easun TL.Rutkaite R.Swanson L.Ward MD. J. Chem. Soc., Dalton Trans. 2004, 3678 -
21a
Barigelletti F.Juris A.Balzani V.Belser P.von Zelewsky A. Inorg. Chem. 1987, 26: 4115 -
21b
Jenkins Y.Friedman AE.Turro NJ.Barton JK. Biochemistry 1992, 31: 10809 -
21c
Holmlin RE.Barton JK. Inorg. Chem. 1995, 34: 7
References and Notes
Selected data for 8: isolated yield quantitative. 1H NMR (CDCl3): δ = 7.32 (m, 4 H), 2.53 (s, 6 H), 2.30 (q, 4 H, 3 J = 7.5 Hz), 1.30 (s, 6 H), 0.98 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 154.5, 138.4, 138.1, 137.2, 135.1, 133.3, 132.3, 130.7, 130.1, 126.5, 17.2, 14.7, 12.7, 12.1 ppm.
18Selected data for 12: 99%. 1H NMR (CDCl3): δ = 7.51 (d, 2 H, 3 J = 8.5 Hz), 7.39-7.32 (m, 4 H), 7.18-7.15 (m, 3 H), 7.00 (br s, 1 H), 6.84 (br s, 1 H), 2.53 (s, 6 H), 2.28 (q, 4 H, 3 J = 7.5 Hz), 1.33 (s, 6 H), 0.96 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 153.8, 153.0, 140.1, 139.2, 138.6, 137.9, 133.0, 131.2, 130.6, 129.6, 129.2, 124.8, 121.6, 119.9, 17.2, 14.7, 12.7, 12.1 ppm. 11B NMR (CDCl3): δ = 3.93 (t, 1 J = 32 Hz) ppm. FAB+-MS: m/z (nature of peak, rel. intensity) = 515.2 (100) [M + H]+. Anal. Calcd for C30H33BF2N4O·H2O: C, 67.67; H, 6.63; N, 10.52. Found: C, 67.52; H, 6.52; N, 10.32.
19Selected data for 13: 60%. 1H NMR (CDCl3): δ = 7.94 (br s, 1 H), 7.81 (br s, 1 H), 7.58 (dd, 2 H, 1 J = 1.7 Hz, 3 J = 6.6 Hz), 7.51-7.45 (m, 2 H), 7.39-7.32 (m, 3 H), 7.30-7.28 (dd, 2 H, 1 J = 1.7 Hz, 3 J = 6.6 Hz), 2.52 (s, 6 H), 2.29 (q, 4 H, 3 J = 7.5 Hz), 1.32 (s, 6 H), 0.97 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 180.0, 154.1, 139.1, 138.5, 138.3, 136.5, 134.0, 133.1, 130.9, 130.3, 129.4, 127.8, 124.4, 125.1, 17.2, 14.7, 12.7, 12.1 ppm. 11B NMR (CDCl3): δ = 3.85 (t, 1 J = 32 Hz) ppm. FAB+-MS: m/z (nature of peak, rel. intensity) = 531.1 (100) [M + H]+. Anal. Calcd for C30H33BF2N4S·H2O: C, 65.69; H, 6.43; N, 10.21. Found: C, 65.49; H, 6.28; N, 9.93.