References and Notes
- 1
Vargas D.
Urbatsch LE.
Fischer NH.
Phytochemistry
1988,
27:
1413
- 2
Barrero AF.
Alvarez-Manzaneda EJ.
Herrador MM.
Alvarez-Manzaneda R.
Quilez J.
Chahboun R.
Linares P.
Rivas A.
Tetrahedron Lett.
1999,
40:
8273
- 3
Bieber LW.
Krebs HC.
Schaefer W.
Phytochemistry
1994,
35:
1027
- 4
Ksebati MB.
Schmitz FJ.
Gunasekara SP.
J. Org. Chem.
1988,
53:
3917
-
5a
Galano J.-M.
Audran G.
Monti H.
Tetrahedron
2000,
56:
7477
-
5b
Audran G.
Galano J.-M.
Monti H.
Eur. J. Org. Chem.
2001,
2293
-
5c
Uttaro J.-P.
Audran G.
Galano J.-M.
Monti H.
Tetrahedron Lett.
2002,
43:
2757
-
5d
Audran G.
Uttaro J.-P.
Monti H.
Synlett
2002,
1261
-
5e
Uttaro J.-P.
Audran G.
Palombo E.
Monti H.
J. Org. Chem.
2003,
68:
5407
-
5f
Uttaro J.-P.
Audran G.
Monti H.
J. Org. Chem.
2005,
70:
3484
-
Recent books:
-
6a
Enzymatic Reaction in Organic Media
Koskinen AMP.
Klibanov AM.
Blackie Academic and Professional;
Glasgow:
1996.
-
6b
Bornscheuer UT.
Kazlauskas RJ.
Hydrolases in Organic Synthesis
Wiley-VCH;
Weinheim:
1999.
-
6c
Stereoselective Biocatalysis
Patel RN.
Marcel Dekker, Inc.;
New York:
2000.
-
6d
Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook
Drauz K.
Waldmann H.
Wiley-VCH;
Weinheim:
2002.
-
6e
Faber K.
Biotransformations in Organic Chemistry
5th ed.:
Springer-Verlag;
Berlin:
2004.
-
6f
Bommarius AS.
Riebel BR.
Biocatalysis
Wiley-VCH;
Weinheim:
2004.
-
Recent reviews:
-
7a
Roberts SM.
J. Chem. Soc., Perkin Trans. 1
2001,
1475
-
7b
Zaks A.
Curr. Opin. Chem. Biol.
2001,
5:
130
-
7c
Koeller KM.
Wong C.-H.
Nature (London)
2001,
409:
232
-
7d
Klibanov AM.
Nature (London)
2001,
409:
241
-
7e
Thomas SM.
DiCosimo R.
Nagarajan V.
Trends Biotechnol.
2002,
20:
238
-
7f
Hanefeld U.
Org. Biomol. Chem.
2003,
1:
2405
-
7g
Garcia-Junceda E.
Garcia-Garcia JF.
Fernandez-Mayoralas AB.
Fernandez-Mayoralas A.
Bioorg. Med. Chem.
2004,
12:
1817
-
7h
Ghanem A.
Aboul-Enein HY.
Tetrahedron: Asymmetry
2004,
15:
3331
-
7i
Faber K.
Kroutil W.
Curr. Opin. Chem. Biol.
2005,
9:
181
-
7j
Garcia-Urdiales E.
Alfonso I.
Gotor V.
Chem. Rev.
2005,
105:
313
-
8a
Noyori R.
Tokunaga M.
Kitamura M.
Bull. Chem. Soc. Jpn.
1995,
68:
36
-
8b
Stecher H.
Faber K.
Synthesis
1997,
1
-
8c
Stürmer R.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1173
-
8d
El Gihani MT.
Williams JMJ.
Biocatal. Biotransform.
1999,
3:
11
-
8e
Strauss UT.
Felfer U.
Faber K.
Tetrahedron: Asymmetry
1999,
10:
107
-
8f
Azerad R.
Buisson D.
Curr. Opin. Biotechnol.
2000,
11:
565
-
8g
Faber K.
Chem. Eur. J.
2001,
7:
5004
-
8h
Huerta FF.
Minidis ABE.
Bäckvall J.-E.
Chem. Soc. Rev.
2001,
30:
321
-
8i
Kim MJ.
Ahn Y.
Park J.
Curr. Opin. Biotechnol.
2002,
13:
578
-
8j
Pàmies O.
Bäckvall J.-E.
Chem. Rev.
2003,
103:
3247
-
8k
Pellissier H.
Tetrahedron
2003,
59:
8291
-
8l
Pàmies O.
Bäckvall J.-E.
Trends Biotechnol.
2004,
22:
130
-
8m
Turner NJ.
Curr. Opin. Chem. Biol.
2004,
8:
114
-
8n
Martín-Matute B.
Edin M.
Bogár K.
Bäckvall J.-E.
Angew. Chem. Int. Ed.
2004,
43:
6535
-
9a
Mitsuda S.
Umemura T.
Hirohara H.
Appl. Microbiol. Biotechnol.
1988,
29:
310
-
9b
Danda H.
Nagatomi T.
Maehara A.
Umemura T.
Tetrahedron
1991,
47:
8701
-
9c
Mayer SF.
Steinreiberg A.
Orru RVA.
Faber K.
J. Org. Chem.
2002,
67:
9115
-
9d
Wallner A.
Mang H.
Glueck SM.
Steinreiber A.
Mayer SF.
Faber K.
Tetrahedron: Asymmetry
2003,
14:
2427
-
9e
Ueberbacher BJ.
Osprian I.
Mayer SF.
Faber K.
Eur. J. Org. Chem.
2005,
1266
-
10a
Vänttinen E.
Kanerva LT.
Tetrahedron: Asymmetry
1995,
6:
1779
-
10b
Pedragosa-Moreau S.
Morisseau C.
Baratti J.
Zylber J.
Archelas A.
Furstoss R.
Tetrahedron
1997,
53:
9707
- 11
Kazlauskas RJ.
Weissfloch ANE.
Rappoport AT.
Cuccia LA.
J. Org. Chem.
1991,
56:
2656
-
For discussions of the cesium effect, see:
-
13a
Dijkstra G.
Kruizinga WH.
Kellogg RM.
J. Org. Chem.
1987,
52:
4230
-
13b
Ostrowicki A.
Koepp E.
Vögtle F.
Top. Curr. Chem.
1992,
161:
37
-
13c
Salvatore RN.
Nagle AS.
Schmidt SE.
Jung KW.
Org. Lett.
1999,
1:
1893
-
14a
Kruizinga WH.
Strijtveen B.
Kellogg RM.
J. Org. Chem.
1981,
46:
4321
-
14b
Arbelo DO.
Castro-Rosario L.
Prieto JA.
Synth. Commun.
2003,
33:
3211 ; and references cited therein
- 16 Using commercially available AD-mix-α or AD-mix-β, the Sharpless AD reaction applied to 3-methyl-3-cyclohexen-one, also afforded directly the target molecule 1 by an in situ elimination of the tertiary hydroxyl group in 2 (64% yield), but in the racemic form, see: Sharpless KB.
Amberg W.
Bennani YL.
Crispino GA.
Hartung J.
Jeong K.-S.
Kwong H.-L.
Morikawa K.
Wang Z.-M.
Xu D.
Zhang X.-L.
J. Org. Chem.
1992,
57:
2768
12
Characterization of Compound 2: white solid; mp 62 °C. IR (KBr): ν = 3412, 1728, 1211, 1159 cm-1. 1H NMR (300 MHz, CDCl3): δ = 3.80 (dd, J = 7.2, 3.6 Hz, 1 H), 3.07 (s, 2 OH), 2.66 and 2.35 (ABX, J = 14.0, 1.5 Hz, 2 H), 2.49 (dddd, J = 14.2, 7.9, 6.2, 1.7 Hz, 1 H), 2.25 (dddd, J = 14.2, 7.2, 6.0, 1.1 Hz, 1 H), 2.05 (dtd, J = 13.6, 7.2, 6.2 Hz, 1 H), 1.93 (dddd, J = 13.6, 7.9, 6.0, 3.6 Hz, 1 H), 1.24 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 209.8 (C), 75.0 (C), 72.8 (CH), 51.3 (CH2), 36.8 (CH2), 28.1 (CH2), 26.1 (CH3). Anal. Calcd for C7H12O3: C, 58.32; H, 8.39. Found: C, 58.21; H, 8.43.
Characterization of Compound 3: white solid; mp 106 °C. IR (KBr): ν = 3391, 1757, 1723, 1148 cm-1. 1H NMR (300 MHz, CDCl3): δ = 5.00 (dd, J = 8.8, 4.1 Hz, 1 H), 2.54 and 2.40 (ABX, J = 14.6, 1.7 Hz, 2 H), 2.36 (m, 2 H), 2.18-2.05 (partially overlapped m, 1 H), 2.08 (s, 3 H), 1.97 (m, 1 H), 1.20 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 207.7 (C), 170.4 (C), 75.0 (CH), 73.7 (C), 51.7 (CH2), 37.4 (CH2), 26.3 (CH3), 25.3 (CH2), 20.9 (CH3). Anal. Calcd for C9H14O4: C, 58.05; H, 7.58. Found: C, 57.89; H, 7.60.
15 CAL-B and RML lipases also showed high enantio-selectivity, but with a slightly lower ee.