Horm Metab Res 2006; 38(4): 260-268
DOI: 10.1055/s-2006-925347
Original
© Georg Thieme Verlag KG Stuttgart · New York

Plasma-binding Globulins and Acute Stress Response

C.  W.  Breuner1 , S.  E.  Lynn2 , G.  E.  Julian1 , J.  M.  Cornelius3 , B.  J.  Heidinger4 , O.  P.  Love5 , R.  S.  Sprague1 , H.  Wada1 , B.  A.  Whitman6
  • 1 Integrative Biology, University of Texas at Austin, Austin, TX
  • 2 Department of Biology, College of Wooster, Wooster, OH
  • 3 Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA
  • 4 Biology, Indiana University, Bloomington, IN
  • 5 Biological Sciences, Simon Fraser University, Burnaby, BC
  • 6 Department of Biology, Boise State University, Boise, ID, USA
Further Information

Publication History

Received 30 September 2005

Accepted after revision 24 January 2006

Publication Date:
15 May 2006 (online)

Abstract

Within studies of acute stress physiology an increase in glucocorticoid secretion is thought to be the primary mediator of tissue response to stress. Corticosteroid-binding globulin may regulate tissue availability of steroids, but has not been considered a dynamic component of the acute stress response. Here, we examined CBG level over the common 60-minute time frame in an acute capture and handling protocol to investigate whether CBG capacity is dynamic or static over short stressors. Using a comparative approach, we measured CBG response to capture and handling stress in nine species of birds, representing five orders and nine families. CBG capacity significantly declined within 30 - 60 minutes of capture in five of the nine species examined. This decline may serve to significantly increase the level of corticosterone reaching tissues during acute stress.

References

  • 1 Wingfield J C, Maney D L, Breuner C W, Jacobs J D, Lynn S, Ramenofsky M, Richardson R D. Ecological bases of hormone-behavior interactions: The ”emergency life history stage“.  Amer Zool. 1998;  38 191-206
  • 2 Wingfield J C. The concept of allostasis: coping with a capricious environment.  J Mammol. 2005;  86 248-254
  • 3 Sapolsky R M, Romero L M, Munck A U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions.  Endocrine Rev. 2000;  21 55-89
  • 4 O’Reilly K M, Wingfield J C. Ecological factors underlying the adrenocortical response to capture stress in arctic-breeding shorebirds.  Gen Comp Endocrinol. 2001;  124 1-11
  • 5 Smith G T, Wingfield J C, Veit R R. Adrenocortical response to stress in the common diving petrel, Pelecanoides urinatrix.  Phys Zool. 1994;  67 526-537
  • 6 Dunlap K D, Wingfield J C. External and Internal Influences on Indices of Physiological Stress. I. Seasonal and Population Variation in Adrenocortical Secretion of Free-Living Lizards, Sceloporus occidentalis.  J Exp Zool. 1995;  271 36-46
  • 7 Breuner C W, Hahn T P. Integrating stress physiology, environmental change, and behavior in free-living sparrows.  Horm Behav. 2003;  43 115-123
  • 8 Breuner C W, Orchinik M, Hahn T P, Meddle S, Moore I T, Owen-Ashley N, Sperry T S, Wingfield J C. Differential mechanisms for regulation of the stress response across latitudinal gradients.  American Journal of Physiology: Regulatory, Comparative, and Integrative Physiology. 2003;  285 R594-R600
  • 9 Wada H, Hahn T P, Breuner C W. Binding globulins extend stress hyporesponsive period in altricial white-crowned sparrow nestlings.  Gen Comp Endocrinol. in review; 
  • 10 Breuner C W, Orchinik M. Seasonal regulation of membrane and intracellular corticosteroid receptors in the house sparrow brain.  J Neuroendocrinol. 2001;  13 412-420
  • 11 Adams N J, Cockrem J F, Taylor G A, Candy E J, Bridges J. Corticosterone responses of grey-faced petrels (Pterodroma macroptera gouldi) are higher during incubation than during other breeding stages.  Physiol Biochem Zool. 2005;  78 69-77
  • 12 Mendel C M. The free hormone hypothesis: a physiologically based mathematical model.  Endorcrine Reviews. 1989;  10 232-274
  • 13 Breuner C W, Orchinik M. Plasma Binding Proteins As Mediators Of Corticosteroid Action In Vertebrates.  J Endocrinol. 2002;  175 99-112
  • 14 Hammond G L. Potential functions of plasma steroid-binding proteins.  TEM. 1995;  6 298-304
  • 15 Rosner W. The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances.  Endocrine Rev. 1990;  11 80-91
  • 16 Sivukhina E V, Jirikowski G F, Bernstein H G, Lewis J G, Herbert Z. Expression of corticosteroid-binding protein in the human hypothalamus, co-localization with oxytocin and vasopressin.  Hormone and Metabolic Research. 2006;  38 252-258
  • 17 Möpert B, Herbert Z, Caldwell J D, Jirikowski G F. Expression of corticosteroid-binding globulin CBG in the rat hypothalamus.  Hormone and Metabolic Research. 2006;  38 245-251
  • 18 Kiseleva E P, Vashkevich I I, Strelchenok O A. Effect of Steroids on Transcortin Binding to Human Syncytiotrophoblast.  Biochemistry-Moscow. 1993;  58 1322-1327
  • 19 Grasa M D, Cabot C, Adan C, de Matteis R, Esteve M, Cinti S, Fernandez-Lopez J A, Remesar X, Alemany M. Corticosteroid-binding globulin synthesis and distribution in rat white adipose tissue.  Molecular and Cellular Biochemistry. 2001;  228 25-31
  • 20 Marti O, Martin M, Gavalda A, Giralt M, Hidalgo J, Hsu B RS, Kuhn R W, Armario A. Inhibition of corticosteroid-binding globulin caused by a severe stressor is apparently mediated by the adrenal but not by glucocorticoid receptors.  Endocrine. 1997;  6 159-164
  • 21 Lynn S E, Breuner C W, Wingfield J C. The effects of short-term fasting on activity, corticosterone, and corticosterone binding globulin in a migratory songbird, Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii).  Horm Behav. 2003;  43 150-157
  • 22 Tinnikov A A. Responses of serum corticosterone and corticosteroid-binding globulin to acute and prolonged stress in the rat.  Endocrine. 1999;  11 145-150
  • 23 Love O P, Breuner C W, Vezina F, Williams T D. Mediation of corticosterone-induced reproductive conflict.  Horm Behav. 2004;  46 59-65
  • 24 Ketterson E D, Nolan J V, Wolf L, Zeigenfus C, Dufty A M, Bass G F, Johnsen T S. Testoserone and avian life histories: the effects of experimentally elevated testosterone on corticosterone and body mass in dark-eyed juncos.  Horm Behav. 1991;  25 489-503
  • 25 Barsano C P, Baumann G. Editorial: simple algebraic and graphic methods for the apportionment of hormone (and receptor) into bound and free fractions in binding equilibria; or how to calculate bound and free hormone?.  Endocrinol. 1989;  124 1101-1106
  • 26 Seabury Sprague R, Breuner C W. Timing of fledging, body condition, and corticosteroid-binding globulin in Laysan Albatross.  Integr Comp Biol. 2005;  45 1070
  • 27 Breuner C W, Wingfield J C. Rapid behavioral response to corticosterone varies with photoperiod and dose.  Horm Behav. 2000;  37 23-30
  • 28 Diamond D M, Bennett M C, Fleshner M, Rose G M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation.  Hippocampus. 1992;  2 421-430
  • 29 Hayden-Hixon D M, Ferris C F. Cortisol exerts site-, context- and dose-dependent effects on agonistic responding in hamsters.  J Neuroendocrinol. 1991;  3 613-622
  • 30 Sandi C, Venero C, Guaza C. Novelty-related rapid locomotor effects of corticosterone in rats.  Eur J of Neurosci. 1996;  8 794-800
  • 31 Kovacs G L, Telegdy G, Lissak K. Dose-dependent action of corticosteroids on brain serotonin content and passive avoidance behavior.  Horm Behav. 1977;  8 155-165
  • 32 Roozendaal B. Curt P. Richter Award - Glucocorticoids and the regulation of memory consolidation.  Pshychoneuroendocrinology. 2000;  25 213-238
  • 33 Kuhn R W, Green A L, Raymoure W J, Siiteri P K. Immunocytochemical localization of corticosteroid-binding globulin in rat tissues. J.  Endocrinol.. 1986;  108 31-36
  • 34 Scrocchi L A, Orava M, Smith C L, Han V KM, Hammond G L. Spatial and temporal distribution of corticosteroid-binding globulin and its messenger ribonucleic acid in embryonic and fetal mice.  Endocrinol. 1993;  132 903-909
  • 35 Hammond G L, Smith C L, Goping I S, Underhill D A, Harley M J, Reventos J, Musto N A, Gunsalus G L, Bardin C W. Primary structure of human corticosteroid-binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors.  PNAS. 1987;  84 5153-5157
  • 36 Perrot-Applanat M, Racadot O, Milgrom E. Specific localization of plasma corticosteroid-binding globulin immunoreactivity in pituitary corticotrophs.  Endocrinol. 1984;  115 559-569
  • 37 Kuhn R W. Corticosteroid-Binding Globulin Interactions with Target-Cells and Plasma-Membranes.  Ann N.Y. Acad Sci. 1988;  538 146-158
  • 38 Hryb D J, Khan M S, Romas N A, Rosner W. Specific binding of human corticosteroid-binding globulin to cell membranes.  PNAS. 1986;  83 3253
  • 39 Singer C J, Khan M S, Rosner W. Characteristics of the binding of corticosteroid-binding globulin to rat cell membranes.  Endocrinol. 1988;  122 89
  • 40 Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides T C. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells.  Brain Res. 2001;  888 117-127
  • 41 Bested A C, Saunders P R, Logan A C. Chronic fatigue syndrome: neurological findings may be related to blood-brain barrier permeability.  Medical Hypotheses. 2001;  57 231-237
  • 42 Madrigal J L, Moro M A, Lizasoain I, Lorenzo P, Leza J C. Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide.  Brain Res. 2002;  938 87-91
  • 43 Nakhla A M, Khan M S, Rosner W. Induction of adenylate cyclase in a mammary carcinoma cell line by human corticosteroid-binding globulin.  Biochemical and Biophysical Research Communication. 1988;  153 1012
  • 44 Strel’chyonok O A, Avvakumov G V. Interaction of human CBG with cell-membranes.  J Steroid Biochem Mol Biol. 1991;  40 795-803
  • 45 Orchinik M. Glucocorticoids, stress, and behavior: shifting the timeframe.  Horm Behav. 1998;  34 320-327
  • 46 Hammes A, Andreassen T K, Spoelgen R, Raila J, Hubner N, Schulz H, Metzger J, Schweigert F J, Luppa P B, Nykjaer A, Willnow T E. Role of endocytosis in cellular uptake of sex steroids.  Cell. 2005;  122 751-762
  • 47 Caldwell J D, Suleman F, Chou S H-H, Shapiro R, Herbert Z, Jirikowski G F. Binding globulins on the rapid effects of steroids.  Hormone and Metabolic Research. (in press); 
  • 48 Jennings D H, Moore M C, Knapp R, Matthews L, Orchinik M. Plasma steroid-binding globulin mediation of differences in stress reactivity in alternative male phenotypes in tree lizards, Urosaurus ornatus.  Gen Comp Endocrinol. 2000;  120 289-299

C. W. Breuner

The University of Montana, Division of Biological Sciences

32 Campus Drive · Missoula MT 59812-4824 · USA

Fax: +1 (406) 243-4184

Email: creagh@montana.edu (from june 2006)

    >