Subscribe to RSS
DOI: 10.1055/s-2006-924399
© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York
Serum Soluble Factors Induce the Proliferation, Alkaline Phosphatase Activity and Transforming Growth Factor-β Signal in Osteoblastic Cells in the Patient with Hepatitis C-associated Osteosclerosis
Publication History
Received: January 4, 2006
First decision: April 3, 2006
Accepted: May 8, 2006
Publication Date:
19 December 2006 (online)
Abstract
Hepatitis C-associated osteosclerosis (HCAO) is a rare syndrome characterized by severe, acquired, generalized osteosclerosis and hyperostosis in adults who are infected with the hepatitis C virus. However, the detail of the pathogenesis of HCAO is still unknown. We examined the effects of serum of the HCAO patient on the proliferation, alkaline phosphatase (ALP) activity and transforming growth factor (TGF)-β-Smad signaling in mouse osteoblastic cells. The patient was compatible with HCAO, characterized by high bone mass, bone thickening and bone pain with normal lamelar bone. The serum from the HCAO patient increased the levels of TGF-β and Smad3 expression in osteoblastic MC3T3-E1 cells, compared with the control subject. Moreover, the serum from the HCAO patient significantly augmented TGF-β-induced transcriptional activity with luciferase assay using 3TP-Lux with a Smad3-specific responsive element. In addition, the serum from the HCAO patient significantly stimulated the MTT intensity, the level of proliferating cell nuclear antigen expression, a proliferation marker, and ALP activity in MC3T3-E1 cells, compared with that from the control subject. In conclusion, the present study indicated that the serum from the HCAO patient stimulated TGF-β-Smad signaling, as well as the proliferation and ALP activity in osteoblastic cells. Some soluble factors other than parathyroid hormone might be related to the pathogenesis of HCAO.
Key words
Osteosclerosis TGF-β - osteoblast - smad3
References
- 1 Beck LS, Amento EP, Xu Y, Deguzman L, Lee WP, Nguyen T, Gillett NA. TGF-β1 induces bone closure of skull defects: Temporal dynamics of bone formation in defects exposed to rhTGF-β1. J Bone Miner Res. 1993; 8 753-761
- 2 Beyer SH, Parfitt AM, Shih MS, Anderson Q, Heath III H. Idiopathic acquired diffuse osteosclerosis in a young woman. J Bone Miner Res. 1990; 5 1257-1263
- 3 Borton AJ, Frederick JP, Datto MB, Wang XF, Weinstein RS. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res. 2001; 16 1754-1764
- 4 Diamond T, Depczynski B. Acquired osteosclerosis associated with in travenous drug use and hepatitis C infection. Bone. 1996; 19 679-683
- 5 Hassoun A, Nippoldt TB, Tiegs RD, Khosla S. Hepatitis C-associated osteosclerosis: an unusual syndrome of acquired osteosclerosis in adults. Am J Med. 1997; 103 70-73
- 6 Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, Lissens W, Van Maldergem L, Vanhoenacker F, Verbrug-gen L, Van Hul W. Mutations in the gene encoding the latency-associated peptide of TGF-β1 cause Camurati-Engelmann disease. Nat Genet. 2000; 26 273-275
- 7 Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W. Transforming growth factor-β1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem. 2003; 278 7718-7724
- 8 Janssens K, Ten Dijke P, Janssens S, Van Hul W. TGF-β1 to the bone. Endcr Rev. 2005; 26 743-774
- 9 Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, Guanabens N, Migone N, Wientroub S, Divizia MT, Bergmann C, Bennett C, Simsek S, Melancon S, Cundy T, Van Hul W. Camurati-Engelmann disease: review of the clinical, radiological and molecular data of 24 families and implications towards diagnostics and treatment. J Med Genet. 2006; 43 1-11
- 10 Jeach RJ, Singer FR, Roodman GD. Genetics of Paget's disease of the bone. J Clin Endocrinol Metab. 2001; 86 24-28
- 11 Jennings JC, Mohan S. Heterogeneity of latent transforming growth factor- isolated from bone matrix proteins. Endocrinology. 1990; 126 1014-1021
- 12 Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990; 110 2195-2207
- 13 Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks TGF-β signaling. Proc Natl Acad Sci USA. 2001; 98 3837-3842
- 14 Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, Yama-da K, Kondo S, Ikegawa S, Mishimura G, Fukushima Y, Nakagomi T, Sai-to H, Sugimoto T, Kamegaya M, Hisa K, Murray JC, Taniguchi N, Niika-wa N, Yoshiura K. Domain-specific mutations in TGF β 1 result in Camurati-Engelmann disease. Nat Genet. 2000; 26 19-20
- 15 Khosla S, Hassoun AA, Baker BK, Liu F, Zein NN, Whyte MP, Reasner CA, Nippoldt TB, Tiegs RD, Hintz RL, Conover CA. Insulin-like growth factor system abnormalities in hepatitis C-associated osteosclerosis. Potential insights into increasing bone mass in adults. J Clin Invest. 1998; 101 2165-2173
- 16 Manganelli P, Giuliani N, Fietta P, Mancini C, Lazzaretti M, Pollini A, Quaini F, Pedrazzoni M. OPG/RANKL system imbalance in a case of hepatitis C-associated osteosclerosis: the pathogenetic key?. Clin Rheumatol. 2005; 24 296-300
- 17 Massague J, Chen YG. Controlling TGF-β signaling. Genes Dev. 2000; 14 627-644
- 18 Massague J, Wotton D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 2000; 19 1745-1754
- 19 Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology. 1989; 124 2991-2994
- 20 Rodan GA. Bone homeostasis. Proc Natl Acad Sci USA. 1998; 95 13361-13362
- 21 Roodman GD, Windle JJ. Paget disease of bone. J Clin Invest. 2005; 115 200-208
- 22 Rosen D, Miller SC, DeLeon E, Thompson AY, Bentz H, Mathews M, Adams S. Systemic administration of recombinant transforming growth factor 2 (rTGF-β2) stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone. 1994; 15 355-359
- 23 Shaker JL, Reinus WR, Whyte MP. Hepatitis C-associated osteosclerosis: late onset after blood transfusion in an elderly woman. J Clin Endocrinol Metab. 1998; 83 93-98
- 24 Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J Bone Miner Res. 2002a; 17 1190-1199
- 25 Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Activations of ERK1/2 and JNK by transforming growth factor β negatively regulate Smad3-induced alkaline phosphatase activity and mineralizatiion in mouse osteoblastic cells. J Biol Chem. 2002b; 277 36024-36031
- 26 Sowa H, Kaji H, Iu MF, Tsukamoto T, Sugimoto T, Chihara K. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor β in osteoblasts. J Biol Chem. 2003; 278 52240-52252
- 27 Sparkes RS, Graham CB. Camurati-Engelmann disease: genetics and clinical manifestations with a review of the literature. J Med Genet. 1972; 9 73-85
- 28 Villareal DT, Murphy WA, Teitelbaum SL, Arens MQ, Whyte MP. Painful diffuse osteosclerosis after intravenous drug abuse. Am J Med. 1992; 93 371-381
- 29 Whyte MP, Teitelbaum SL, Reinus WR. Doubling skeletal mass during adult life: the syndrome of diffuse osteosclerosis after intravenous drug abuse. J Bone Miner Res. 1996; 11 554-558
- 30 Whyte MP, Reasner CA. Hepatitis C-associated osteosclerosis after blood transfusion. Am J Med. 1997; 102 219-220
Correspondence
Dr. Hiroshi Kaji
Division of Endocrinology/Metabolism
Neurology and Hematology/Oncology
Department of Clinical Molecular Medicine
Kobe University Graduate School of Medicine
7-5-2 Kusunoki-cho
Chuo-ku
Kobe 650-0017
Japan
Email: hiroshik@med.kobe-u.ac.jp