RSS-Feed abonnieren
DOI: 10.1055/s-2005-921897
An Atom-Economical and Environmentally Benign Preparation of Unsymmetrical Bis-allyl Ethers via Dimerization of Baylis-Hillman Adducts Catalyzed by Cesium Hydroxide Monohydrate
Publikationsverlauf
Publikationsdatum:
04. November 2005 (online)
Abstract
Promoted by a catalytic amount of cesium hydroxide monohydrate, unsymmetrical bis-allyl ethers consisting of an E-allylic unit and a terminal allylic unit were formed via dimerization of Baylis-Hillman adducts in moderate to good yields at room temperature.
Key words
cesium hydroxide monohydrate - unsymmetrical bis-allyl ethers - Baylis-Hillman adduct - stereoselectivity - dimerization
-
1a
Marafat A.McGuirk PR.Helquist P. J. Org. Chem. 1979, 44: 3888 -
1b
Anderson RJ.Coleman JE.Piers E.Wallace DJ. Tetrahedron Lett. 1997, 38: 317 -
1c
Tanak H.Kuroda A.Marusawa H.Hatanaka H.Kino T.Goto T.Hashimoto M. J. Am. Chem. Soc. 1987, 109: 5031 -
1d
Ishibashi Y.Ohba S.Nishyama S.Yamamura S. Tetrahedron Lett. 1996, 37: 2997 - 2
Senokuchi K.Nakai H.Nakayama Y.Odagaki Y.Sakaki K.Kato M.Maruyama T.Miyazaki T.Ito H.Kamiyasu K.Kim S.Kawamura M.Hamanaka N. J. Med. Chem. 1995, 38: 2521 - 3
Watanabe T.Hayashi K.Yoshimatsu S.Sakai K.Takeyama S.Takashima K. J. Med. Chem. 1980, 23: 50 -
4a
Denmark SE.Amburgey J. J. Am. Chem. Soc. 1993, 115: 10386 -
4b
Kocienski P.Dixon NJ.Wadman S. Tetrahedron Lett. 1988, 29: 2353 -
4c
Myers AG.Kukkola PJ. J. Am. Chem. Soc. 1990, 112: 8208 -
4d
Creton I.Marek I.Brasseur D.Jestin JL.Normant JF. Tetrahedron Lett. 1994, 35: 6873 - For reviews, see:
-
5a
Ciganek E. Org. React. 1997, 51: 201 -
5b
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
5c
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 - For recent examples, see:
-
6a
Das B.Mahender G.Chowdhury N.Banerjee J. Synlett 2005, 1000 -
6b
Kim JN.Lee HJ.Lee KY.Gong JH. Synlett 2002, 173 -
6c
Kabalka GW.Venkataiah B.Dong G. Org. Lett. 2003, 5: 3803 -
6d
Kabalka GW.Venkataiah B.Dong G. Tetrahedron Lett. 2003, 44: 4673 -
6e
Chung YM.Gong JH.Kim TH.Kim JN. Tetrahedron Lett. 2001, 42: 9023 -
6f
Shi M.Jiang JK.Feng YS. Org. Lett. 2000, 2: 2397 -
7a
Li J.Qian WX.Zhang YM. Tetrahedron 2004, 60: 5793 -
7b
Li J.Xu H.Zhang YM. Tetrahedron Lett. 2005, 46: 1931 -
7c
Li J.Wang XX.Zhang YM. Synlett 2005, 1039 -
7d
Li J.Wang XX.Zhang YM. Tetrahedron Lett. 2005, 46: 5233 - 8 The CsOH·H2O is commercially available (Aldrich). One example of CsOH·H2O-catalyzed reactions, see:
Tzalis D.Knochel P. Angew. Chem. Int. Ed. 1999, 38: 1463 - 9
Rose PM.Clifford AA.Rayner CM. Chem. Commun. 2002, 968 - 10
Basavaiah D.Bakthadoss M.Jayapal Reddy G. Synth. Commun. 2002, 32: 689 - 11 All Baylis-Hillman adducts were prepared according to literature:
Hoffman HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1983, 22: 795 - Bis-allyl ethers were found to be useful intermediates in organic synthesis, see:
-
15a
Ben Ammar H.Le Nôtre J.Salem M.Kaddachi MT.Dixneuf PH. J. Organomet. Chem. 2002, 662: 63 -
15b
Le Nôtre J.Brissieux L.Sémeril D.Bruneau C.Dixneuf PH. Chem. Commun. 2002, 1772
References
Typical Experimental Procedure. In a 25-mL flask was charged with CsOH·H2O (50 mg, 0.3 mmol) and THF (10 mL). The suspension was stirred at r.t. for 10 min. The Baylis-Hillman adduct 1 (1 mmol) was added to the flask and stirred at r.t. for 0.5-1 h. The reaction mixture was poured into Et2O (50 mL), washed with H2O (2 × 25 mL) and brine (35 mL). The combined ethereal layers were dried over MgSO4. After evaporation of solvent the residue was purified by chromatography using cyclohexane-EtOAc (6:1) as eluent.
13Spectroscopic data of 2b: oil. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H, CH 3), 2.37 (s, 3 H, CH 3), 3.71 (s, 3 H, OCH 3), 3.79 (s, 3 H, OCH 3), 4.20 (d, 1 H, 2 J = 10.0 Hz, methylene-H), 4.33 (d, 1 H, 2 J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.00 (t, 1 H, 2 J = 1.6 Hz, terminal olefin-H), 6.35 (t, 1 H, 2 J = 1.6 Hz, terminal olefin-H), 7.13 (d, 2 H, J = 8.0 Hz, ArH), 7.15 (d, 2 H, J = 8.0 Hz, ArH), 7.27 (d, 2 H, J = 8.0 Hz, ArH), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.87 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 21.16, 21.39, 51.74, 51.97, 63.72, 79.28, 125.53, 127.81, 128.93, 129.18, 129.97, 131.80, 136.29, 137.60, 139.63, 140.84, 143.24, 144.95, 166.42, 168.15. IR (film): ν = 3073, 3025, 1721, 1631, 1594, 1066 cm-1. MS (70 eV): m/z (%) = 394 [M+]. Anal. Calcd for C24H26O5: C, 73.08; H, 6.64. Found: C, 73.25; H, 6.70. According to NOESY experiment, there is no NOE correlation between the signals of the internal olefin proton and the allylic methylene protons.
14Selected spectroscopic data for compound 2:
Compound 2a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.69 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.23 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.33 (s, 1 H, OCH-Ph), 5.90 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.31 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.25-7.51 (m, 10 H, ArH), 7.91 (s, 1 H, ArCH=). IR (film): ν = 3078, 3030, 1720, 1633, 1600, 1067 cm-1. MS (70 eV):
m/z (%) = 366 [M+]. Anal. Calcd for C22H22O5: C, 72.12; H, 6.05. Found: C, 72.25; H, 6.01.
Compound 2c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.70 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.20 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.29 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.34 (s, 1 H, O-CH-Ar), 5.94 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.29-7.36 (m, 6 H, ArH), 7.41 (d, 2 H, J = 8.0 Hz, ArH), 7.85 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 51.80, 52.08, 63.56, 78.79, 125.90, 128.43, 128.74, 129.11, 131.09, 131.36, 132.95, 133.80, 135.54, 137.83, 140.52, 143.54, 166.05, 167.58. IR (film): ν = 3070, 3026, 1724, 1632, 1593, 1118 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.56; H, 4.69.
Compound 2d: oil. 1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3 H, OCH
3), 3.82 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.32 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.76 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 5.83 (s, 1 H, O-CH-Ar), 6.41 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 7.22-7.42 (m, 6 H, ArH), 7.52-7.63 (m, 2 H, ArH), 8.04 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 52.15, 52.40, 64.72, 76.07, 127.08, 127.13, 127.51, 129.21, 129.40, 128.64, 129.73, 130.19, 130.66, 131.19, 131.49, 133.28, 136.88, 139.84, 141.38, 141.83, 166.48, 167.61. IR (film): ν = 3066, 3025, 1721, 1635, 1592, 1067 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.64; H, 4.56.
Compound 2e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.79 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 3.81 (s, 3 H, OCH
3), 3.84 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.01 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.86 (d, 2 H, J = 8.0 Hz, ArH), 6.90 (d, 2 H, J = 8.0 Hz, ArH), 7.32 (d, 2 H, J = 8.0 Hz, ArH), 7.48 (d, 2 H, J = 8.0 Hz, ArH), 7.86 (s, 1 H, ArCH=). IR (film): ν = 3075, 3020, 1721, 1629, 1606, 1120 cm-1. MS (70 eV): m/z (%) = 426 [M+]. Anal. Calcd for C24H26O7: C, 67.59; H, 6.15. Found: C, 67.40; H, 6.24.