Subscribe to RSS
DOI: 10.1055/s-2005-872662
A Sterically Modified (Salen)Chromium(III) Complex - An Efficient Catalyst for High-Pressure Asymmetric Allylation of Aldehydes
Publication History
Publication Date:
08 August 2005 (online)
Abstract
A novel (salen)chromium(III) catalyst with a modified salen ligand was synthesised in a simple way starting from readily available precursors. High-pressure allylation reaction of aromatic and aliphatic aldehydes with allyltributyltin upon application of 1 mol% of a modified (salen)chromium(III) complex provides homoallylic alcohols in good yield and with high enantioselectivity (up to 92%). The catalyst reveals higher enantioselectivity than the classic Jacobsen’s complex.
Key words
aldehydes - allylstannane - asymmetric catalysis - high-pressure technique - homoallylic alcohols - salen(chromium) complexes
-
1a
Larrow JF.Jacobsen EN. Top. Organomet. Chem. 2004, 6: 123 -
1b
Cozzi PG. Chem. Soc. Rev. 2004, 33: 410 - 2
Martínez LE.Leighton JL.Carsten DH.Jacobsen EN. J. Am. Chem. Soc. 1995, 117: 5897 -
3a
Schaus SE.Brånalt J.Jacobsen EN. J. Org. Chem. 1998, 63: 403 -
3b
Huang Y.Iwama T.Rawal VH. J. Am. Chem. Soc. 2000, 122: 784 - 4
Leighton JL.Jacobsen EN. J. Org. Chem. 1996, 61: 389 - 5
McGarrigle EM.Gilheany DG. Chem. Rev. 2005, 105: 1563 - 6
Doyle AG.Jacobsen EN. J. Am. Chem. Soc. 2005, 127: 62 -
7a
Bandini M.Cozzi PG.Melchiorre P.Umani-Ronchi A. Angew. Chem. Int. Ed. 1999, 38: 3357 -
7b
Bandini M.Cozzi PG.Umani-Ronchi A. Angew. Chem. Int. Ed. 2000, 39: 2327 -
7c
Bandini M.Cozzi PG.Umani-Ronchi A. Tetrahedron 2001, 57: 835 -
7d
Berkessel A.Menche D.Sklorz CA.Schröder M.Paterson I. Angew. Chem. Int. Ed. 2003, 42: 1032 - 8 For a review of applications of(salen)Cr complexes in asymmetric catalysis see:
Bandini M.Cozzi PG.Umani-Ronchi A. Chem. Commun. 2002, 919 - 9 For a recent review on enantioselective allylation, see:
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 -
10a
Costa AL.Piazza MG.Tagliavini E.Trombini C.Umani-Ronchi A. J. Am. Chem. Soc. 1993, 115: 7001 -
10b
Keck GE.Tarbet KH.Geraci LS. J. Am. Chem. Soc. 1993, 115: 8467 -
11a
Bedeschi P.Casolari S.Costa AL.Tagliavini E.Umani-Ronchi A. Tetrahedron Lett. 1995, 36: 7897 -
11b
Casolari S.Cozzi PG.Orioli PA.Tagliavini E.Umani-Ronchi A. Chem. Commun. 1997, 2123 -
11c
Hanawa H.Kii S.Asao N.Maruoka K. Tetrahedron Lett. 2000, 41: 5543 - 12
Yanagisawa A.Nakashima H.Ishiba A.Yamamoto H. J. Am. Chem. Soc. 1996, 118: 4723 - 13
Furuta K.Mouri M.Yamamoto H. Synlett 1991, 561 - 14
Kwiatkowski P.Jurczak J. Synlett 2005, 227 - 15
Kwiatkowski P.Chaladaj W.Jurczak J. Tetrahedron Lett. 2004, 45: 5343 -
16a
High Pressure Chemistry
Eldik R.Klarner F.-G. Wiley; New York: 2002. -
16b
Chemistry under Extreme or Non-Clasical Conditions
van Eldik R.Hubbard CD. Wiley; New York: 1997. -
16c
Organic Synthesis at High Pressure
Matsumato K.Acheson RM. Wiley; New York: 1991. -
16d
High Pressure Chemical Synthesis
Jurczak J.Baranowski B. Elsevier; New York: 1989. - 17
Yamamoto Y.Maruyama K.Matsumoto K. J. Chem. Soc., Chem. Commun. 1983, 489 -
18a
Irie R.Noda K.Ito Y.Matsumoto N.Katsuki T. Tetrahedron Lett. 1990, 31: 7345 -
18b
Hosoya N.Irie R.Katsuki T. Synlett 1993, 261 -
19a
Sasaki T.Irie R.Hamada T.Suzuki K.Katsuki T. Tetrahedron 1994, 50: 11827 -
19b
Ito YN.Katsuki T. Bull. Chem. Soc. Jpn. 1999, 72: 603 - 20
Zhang W.Jacobsen EN. J. Org. Chem. 1991, 56: 2296 - 21
Pietikäinen P. Tetrahedron 2000, 56: 417 -
22a
Casiraghi G.Casnati G.Puglia G.Sartori G.Terenghi G. J. Chem. Soc., Perkin Trans. 1 1980, 1862 -
22b
Deng L.Jacobsen EN. J. Org. Chem. 1992, 57: 4320 - 23
Larrow JF.Jacobsen EN. J. Org. Chem. 1994, 59: 1939
References
Analytical data for the modified salen ligand (1R,2R)-7: mp 89-93 °C; [α]D 29 -329.5 (c 1.0, CHCl3); IR (KBr): 2963, 2875, 1628, 1597, 1445, 1263, 699 cm-1; 1H NMR (200 MHz, CDCl3): δ = 13.13 (s, OH, 2 H), 8.00 (s, CHN, 2 H), 7.45 (d, J = 1.8 Hz, 2 H), 7.25-7.09 (m, 10 H), 6.92 (d, J = 1.8 Hz, 2 H), 3.13-2.99 (m, 2 H), 2.50-2.25 (m, 4 H), 2.12-1.94 (m, 4 H), 1.86-1.69 (m, 4 H), 1.66-1.44 (m, 2 H), 1.30 (s, 18 H), 0.60 (t, J = 7.2 Hz, 6 H), 0.53 (t, J = 7.2 Hz, 6 H); 13C NMR (50 MHz, CDCl3): δ = 165.5 (2 × CHN), 157.5 (2 × C), 148.5 (2 × C), 139.2 (2 × C), 133.1 (2 × C), 129.2 (2 × CH), 127.2 (4 × CH), 127.0 (4 × CH), 125.8 (2 × CH), 124.7 (2 × CH), 117.5 (2 × C), 72.3 (2 × CH), 49.0 (2 × C), 34.0 (2 × C), 32.9 (2 × CH2), 31.5 (6 × CH3), 28.0 (2 × CH2), 27.1 (2 × CH2), 24.3 (2 × CH2), 8.7 (4 × CH3); Anal. Calcd for C50H66N2O2: C, 82.60; H, 9.15; N, 3.85. Found: C, 82.55; H, 9.23; N, 3.83; HRMS: [M + Na]+ calcd for C50H66N2O2Na: 749.5022, found: 749.5021.
25Analytical data for the complex (1R,2R)-8: [α]D
29 -1420
(c 0.01, CHCl3); IR (KBr): 3429, 2961, 2873, 1622, 1533, 1437, 1258, 700, 546 cm-1; HRMS: [M - Cl]+ calcd for C50H64N2O2Cr: 776.4373, found: 776.4392.
General Procedure for High-Pressure Allylation: In a 2-mL Teflon ampoule were placed catalyst 1g (8.7 mg, 1 mol%), CH2Cl2 (ca. 1 mL), followed by aldehyde (1 mmol) and allyltributyltin (1.1-1.2 equiv). Finally, the ampoule was filled with CH2Cl2, closed and placed in a high-pressure vessel, and the pressure was slowly increased to 10 kbar at 20 °C. After the pressure had stabilized, the reaction mixture was kept under these conditions for 24 h. After decompression, the reaction mixture was diluted with wet Et2O and dried over MgSO4. After evaporation of solvents, the residue was chromatographed on a silica gel column (hexane-EtOAc).
27The enantioselectivity of homoallylic alcohols 3a-f was determined by GC employing a capillary chiral β-dex 120 column. Alcohol 3f was analyzed directly, 3a, 3c and 3d as their O-trimethylsilyl derivatives, 3b as an acetate and 3e as a trifluoroacetate.