Semin Reprod Med 2005; 23(3): 222-233
DOI: 10.1055/s-2005-872450
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Generating Oocytes and Sperm from Embryonic Stem Cells

James Kehler1 , Karen Hübner1 , 2 , Stacey Garrett3 , Hans R. Schöler1 , 2
  • 1Germline Development Group, University of Pennsylvania, School of Veterinary Medicine, Center for Animal Transgenesis and Germ Cell Research, Kennett Square, Pennsylvania
  • 2Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
  • 3Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
01 August 2005 (online)

ABSTRACT

Embryonic stem (ES) cells, derivatives of cells of early mammalian embryos, have turned out to be one of the most powerful tools in developmental and stem cell biology. When injected into embryos, ES cells can contribute to tissues derived from all three germ layers and to the germline. Amazingly, ES cells in culture are able to recapitulate features of embryonic development spontaneously. In addition to previous successes in deriving somatic cell types, recent studies have shown that both mouse and human ES cells can also give rise to primordial germ cells (PGCs) in culture. These mouse germ cells appear to be capable of undergoing meiosis and forming both male and female gametes. Although the full function of these ES-derived germ cells and gametes remains to be demonstrated, these findings open the door for undertaking new types of reproductive studies and novel approaches in regenerative medicine.

REFERENCES

  • 1 Robertson E J. Pluripotential stem cell lines as a route into the mouse germ line.  Trends Genet. 1986;  2 9-13
  • 2 Beddington R S, Robertson E J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo.  Development. 1989;  105 733-737
  • 3 Tam P L, Rossant J. Mouse embryonic chimeras: tools for studying mammalian development.  Development. 2003;  130 6155-6163
  • 4 Nagy A, Gocza E, Diaz E M et al.. Embryonic stem cells alone are able to support fetal development in the mouse.  Development. 1990;  110 815-821
  • 5 Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder J C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.  Proc Natl Acad Sci USA. 1993;  90 8424-8428
  • 6 Niwa H, Miyazaki J, Smith A G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.  Nat Genet. 2000;  24 372-376
  • 7 Geijsen N, Horoschak M, Kim K et al.. Derivation of embryonic germ cells and male gametes from embryonic stem cells.  Nature. 2004;  427 148-154
  • 8 Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro.  Proc Natl Acad Sci USA. 2003;  100 11457-11462
  • 9 Hubner K, Fuhrmann G, Christenson L K et al.. Derivation of oocytes from mouse embryonic stem cells.  Science. 2003;  300 1251-1256
  • 10 Clark A T, Bodnar M S, Fox M et al.. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.  Hum Mol Genet. 2004;  13 727-739
  • 11 Pesce M, Gross M K, Scholer H R. In line with our ancestors: Oct-4 and the mammalian germ.  Bioessays. 1998;  20 722-732
  • 12 Scholer H R, Hatzopoulos A K, Balling R, Suzuki N, Gruss P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor.  EMBO J. 1989;  8 2543-2550
  • 13 Rosner M H, Vigano M A, Ozato K et al.. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo.  Nature. 1990;  345 686-692
  • 14 Yeom Y I, Ha H S, Balling R, Scholer H R, Artzt K. Structure, expression and chromosomal location of the Oct-4 gene.  Mech Dev. 1991;  35 171-179
  • 15 Scholer H R, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4.  Nature. 1990;  344 435-439
  • 16 Palmieri S L, Peter W, Hess H, Scholer H R. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation.  Dev Biol. 1994;  166 259-267
  • 17 Nichols J, Zevnik B, Anastassiadis K et al.. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.  Cell. 1998;  95 379-391
  • 18 Gardner R L, Rossant J. Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection.  J Embryol Exp Morphol. 1979;  52 141-152
  • 19 Rossant J, Gardner R L, Alexandre H L. Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report.  J Embryol Exp Morphol. 1978;  48 239-247
  • 20 Yoshimizu T, Obinata M, Matsui Y. Stage-specific tissue and cell interactions play key roles in mouse germ cell specification.  Development. 2001;  128 481-490
  • 21 Tam P P, Zhou S X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo.  Dev Biol. 1996;  178 124-132
  • 22 Lawson K A, Hage W J. Clonal analysis of the origin of primordial germ cells in the mouse.  Ciba Found Symp. 1994;  182 68-84 discussion 84-91
  • 23 Fuhrmann G, Chung A C, Jackson K J et al.. Mouse germline restriction of Oct4 expression by germ cell nuclear factor.  Dev Cell. 2001;  1 377-387
  • 24 Yeom Y I, Fuhrmann G, Ovitt C E et al.. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells.  Development. 1996;  122 881-894
  • 25 Kehler J, Tolkunova E, Birgit K et al.. Oct4 is required for primordial germ cell survival.  EMBO Rep. 2004;  5 1078-1083
  • 26 Takeda J, Seino S, Bell G I. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues.  Nucleic Acids Res. 1992;  20 4613-4620
  • 27 Abdel-Rahman B, Fiddler M, Rappolee D, Pergament E. Expression of transcription regulating genes in human preimplantation embryos.  Hum Reprod. 1995;  10 2787-2792
  • 28 Goto T, Adjaye J, Rodeck C H, Monk M. Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis.  Mol Hum Reprod. 1999;  5 851-860
  • 29 Zwaka T P, Thomson J A. Homologous recombination in human embryonic stem cells.  Nat Biotechnol. 2003;  21 319-321
  • 30 Park J, Kim S, Oh E et al.. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line.  Biol Reprod. 2003;  69 2007-2014
  • 31 Smith A G, Heath J K, Donaldson D D et al.. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.  Nature. 1988;  336 688-690
  • 32 Stahl N, Boulton T G, Farruggella T et al.. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components.  Science. 1994;  263 92-95
  • 33 Nakamura T, Arai T, Takagi M et al.. A selective switch-on system for self-renewal of embryonic stem cells using chimeric cytokine receptors.  Biochem Biophys Res Commun. 1998;  248 22-27
  • 34 Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.  Genes Dev. 1998;  12 2048-2060
  • 35 Matsuda T, Nakamura T, Nakao K et al.. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells.  EMBO J. 1999;  18 4261-4269
  • 36 Humphrey R K, Beattie G M, Lopez A D et al.. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent.  Stem Cells. 2004;  22 522-530
  • 37 Thomson J A, Itskovitz-Eldor J, Shapiro S S et al.. Embryonic stem cell lines derived from human blastocysts.  Science. 1998;  282 1145-1147
  • 38 Burdon T, Chambers I, Stracey C, Niwa H, Smith A. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells.  Cells Tissues Organs. 1999;  165 131-143
  • 39 Mitsui K, Tokuzawa Y, Itoh H et al.. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.  Cell. 2003;  113 631-642
  • 40 Chambers I, Colby D, Robertson M et al.. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.  Cell. 2003;  113 643-655
  • 41 Clark A T, Rodriguez R T, Bodnar M S et al.. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma.  Stem Cells. 2004;  22 169-179
  • 42 Lawson K A, Dunn N R, Roelen B A et al.. Bmp4 is required for the generation of primordial germ cells in the mouse embryo.  Genes Dev. 1999;  13 424-436
  • 43 Fujiwara T, Dunn N R, Hogan B L. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse.  Proc Natl Acad Sci USA. 2001;  98 13739-13744
  • 44 Pesce M, Gioia Klinger F, De Felici M. Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling.  Mech Dev. 2002;  112 15-24
  • 45 Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse.  Mol Endocrinol. 2000;  14 1053-1063
  • 46 Ying Y, Qi X, Zhao G Q. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways.  Proc Natl Acad Sci USA. 2001;  98 7858-7862
  • 47 Tremblay K D, Dunn N R, Robertson E J. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation.  Development. 2001;  128 3609-3621
  • 48 Chang H, Matzuk M M. Smad5 is required for mouse primordial germ cell development.  Mech Dev. 2001;  104 61-67
  • 49 Hayashi K, Kobayashi T, Umino T et al.. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast.  Mech Dev. 2002;  118 99-109
  • 50 Ginsburg M, Snow M H, McLaren A. Primordial germ cells in the mouse embryo during gastrulation.  Development. 1990;  110 521-528
  • 51 Hahnel A C, Rappolee D A, Millan J L et al.. Two alkaline phosphatase genes are expressed during early development in the mouse embryo.  Development. 1990;  110 555-564
  • 52 MacGregor G R, Zambrowicz B P, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells.  Development. 1995;  121 1487-1496
  • 53 Durcova-Hills G, Prelle K, Muller S et al.. Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor.  Zygote. 1998;  6 271-275
  • 54 Shamblott M J, Axelman J, Wang S et al.. Derivation of pluripotent stem cells from cultured human primordial germ cells.  Proc Natl Acad Sci USA. 1998;  95 13726-13731
  • 55 Saitou M, Barton S C, Surani M A. A molecular programme for the specification of germ cell fate in mice.  Nature. 2002;  418 293-300
  • 56 Bortvin A, Goodheart M, Liao M, Page D C. Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice.  BMC Dev Biol. 2004;  4 1-5
  • 57 McLaren A. Primordial germ cells in the mouse.  Dev Biol. 2003;  262 1-15
  • 58 Toyooka Y, Tsunekawa N, Takahashi Y et al.. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development.  Mech Dev. 2000;  93 139-149
  • 59 Raz E. The function and regulation of vasa-like genes in germ-cell development.  Genome Biol. 2000;  1 (reviews) 1017.1-1017.6
  • 60 Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germ cell development.  Cell Struct Funct. 2001;  26 131-136
  • 61 Witschi E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds.  Contr Embryol Carnegie Inst. 1948;  32 69-80
  • 62 Castrillon D H, Quade B J, Wang T Y, Quigley C, Crum C P. The human VASA gene is specifically expressed in the germ cell lineage.  Proc Natl Acad Sci USA. 2000;  97 9585-9590
  • 63 Tanaka S S, Toyooka Y, Akasu R et al.. The mouse homolog of Drosophila Vasa is required for the development of male germ cells.  Genes Dev. 2000;  14 841-853
  • 64 Yoshimizu T, Sugiyama N, De Felice M et al.. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice.  Dev Growth Differ. 1999;  41 675-684
  • 65 Nordhoff V, Hubner K, Bauer A et al.. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences.  Mamm Genome. 2001;  12 309-317
  • 66 Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton D A, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.  Proc Natl Acad Sci USA. 2000;  97 11307-11312
  • 67 Koshimizu U, Taga T, Watanabe M et al.. Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells.  Development. 1996;  122 1235-1242
  • 68 Solter D, Knowles B B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1).  Proc Natl Acad Sci USA. 1978;  75 5565-5569
  • 69 Rathjen J, Rathjen P D. Lineage specific differentiation of mouse ES cells: formation and differentiation of early primitive ectoderm-like (EPL) cells.  Methods Enzymol. 2003;  365 3-25
  • 70 Tilmann C, Capel B. Cellular and molecular pathways regulating mammalian sex determination.  Recent Prog Horm Res. 2002;  57 1-18
  • 71 Albrecht K H, Eicher E M. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor.  Dev Biol. 2001;  240 92-107
  • 72 Ohta H, Wakayama T, Nishimune Y. Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development.  Biol Reprod. 2004;  70 1286-1291
  • 73 Adams I R, McLaren A. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis.  Development. 2002;  129 1155-1164
  • 74 Upadhyay S, Zamboni L. Ectopic germ cells: natural model for the study of germ cell sexual differentiation.  Proc Natl Acad Sci USA. 1982;  79 6584-6588
  • 75 McLaren A. Sex chimaerism and germ cell distribution in a series of chimaeric mice.  J Embryol Exp Morphol. 1975;  33 205-216
  • 76 Sakai Y, Noce T, Yamashina S. Cleavage-like cell division and explosive increase in cell number of neonatal gonocytes.  Dev Growth Differ. 2004;  46 15-21
  • 77 de Rooij D G, Russell L D. All you wanted to know about spermatogonia but were afraid to ask.  J Androl. 2000;  21 776-798
  • 78 Oakberg E F. Spermatogonial stem-cell renewal in the mouse.  Anat Rec. 1971;  169 515-531
  • 79 Nebel B, Amarose A, Hackett E. Calendar of gametogenic development in the prepubertal mouse.  Science. 1961;  134 832-833
  • 80 Kishigami S, Wakayama S, Nguyen V T, Wakayama T. Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production.  Biol Reprod. 2004;  70 1863-1869
  • 81 Honaramooz A, Snedaker A, Boiani M et al.. Sperm from neonatal mammalian testes grafted in mice.  Nature. 2002;  418 778-781
  • 82 Honaramooz A, Li M W, Penedo M C, Meyers S, Dobrinski I. Accelerated maturation of primate testis by xenografting into mice.  Biol Reprod. 2004;  70 1500-1503
  • 83 Pesce M, Wang X, Wolgemuth D J, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation.  Mech Dev. 1998;  71 89-98
  • 84 Menke D B, Koubova J, Page D C. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave.  Dev Biol. 2003;  262 303-312
  • 85 Yoshida K, Kondoh G, Matsuda Y et al.. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis.  Mol Cell. 1998;  1 707-718
  • 86 O’Brien M J, Pendola J K, Eppig J J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.  Biol Reprod. 2003;  68 1682-1686
  • 87 Dobson M J, Pearlman R E, Karaiskakis A, Spyropoulos B, Moens P B. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction.  J Cell Sci. 1994;  107(pt 10) 2749-2760
  • 88 Gosden R G. Oogenesis as a foundation for embryogenesis.  Mol Cell Endocrinol. 2002;  186 149-153
  • 89 Juneja S C, Barr K J, Enders G C, Kidder G M. Defects in the germ line and gonads of mice lacking connexin43.  Biol Reprod. 1999;  60 1263-1270
  • 90 Findlay J K, Drummond A E, Dyson M L et al.. Recruitment and development of the follicle; the roles of the transforming growth factor-beta superfamily.  Mol Cell Endocrinol. 2002;  191 35-43
  • 91 Eppig J, Viveiros M, Bivens C, De La Fuente R. Regulation of mammalian oocyte maturation. In: Long P, E Adashi The Ovary. San Diego, CA; Elsevier 2003: 113-129
  • 92 Krivokharchenko A, Popova E, Zaitseva I et al.. Development of parthenogenetic rat embryos.  Biol Reprod. 2003;  68 829-836
  • 93 Fan H, Sun Q. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals.  Biol Reprod. 2004;  70 535-547
  • 94 University of Wisconsin-Madison. Embryonic stem cells: stem cells in culture. Available at: http://www.news.wisc.edu/packages/stemcells/es_gpt.html Accessed June 24, 2005
  • 95 Nayernia K, Li M, Jaroszynski L et al.. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells.  Hum Mol Genet. 2004;  13 1451-1460
  • 96 Testa G, Harris J. Ethical aspects of ES cell-derived gametes.  Science. 2004;  305 1719

 Dr.
H. R Schöler

Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology

Mendelstrasse 7, 48149 Münster, Germany

Email: schoeler@mpi-muenster.mpg.de