References
For general accounts on MCPBA reactions, see:
1a
Comprehensive Organic Synthesis
Vol. 7:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.357-372
1b
Paquette L.
Encyclopedia of Reagents for Organic Synthesis
Vol. 2:
John Wiley and Sons;
New York:
1995.
p.1192-1198
2
Prilezhaev N.
Ber.
1909,
42:
4811
For the well-known ‘butterfly’ mechanism of epoxidation see:
3a
Bartlett PA.
Rec. Chem. Prog.
1957,
18:
111
For some recent reports on the radical hypothesis see:
3b
Yamabe S.
Kondou C.
Minato T.
J. Org. Chem.
1996,
61:
616
3c
Okovytyy S.
Gorb L.
Leszczynski J.
Tetrahedron
2002,
58:
8751
3d
Bach RD.
Glukhovtsev MN.
Gonzalez C.
J. Am. Chem. Soc.
1998,
120:
9902
4a
Warrener RN.
Elsey GM.
Pitt IG.
Russell RA.
Aust. J. Chem.
1995,
48:
241
For the synthesis of α-haloepoxides see also:
4b
Ono T.
Henderson P.
Tetrahedron Lett.
2002,
43:
7961
4c
Taber DF.
Mitten JV.
J. Org. Chem.
2002,
67:
3847
4d
Benayoud F.
Begue JP.
Bonnet-Delpon D.
Fischer-Durand N.
Sdassi H.
Synthesis
1993,
1083
5
Kocienski P.
J. Chem. Soc., Perkin Trans. 1
1983,
945
6
Nakayama J.
Kamiyama H.
Tetrahedron Lett.
1992,
49:
7539
7a
Benfatti F.
Cardillo G.
Fabbroni S.
Gentilucci L.
Perciaccante R.
Piccinelli F.
Tolomelli A.
Synthesis
2005,
61
7b
Cardillo G.
Fabbroni S.
Gentilucci L.
Perciaccante R.
Piccinelli F.
Tolomelli A.
Org. Lett.
2005,
4:
533
7c
Cardillo G.
Fabbroni S.
Gentilucci L.
Perciaccante R.
Tolomelli A.
Adv. Synth. Catal.
2005,
6:
833
7d
Benfatti F.
Cardillo G.
Fabbroni S.
Gentilucci L.
Perciaccante R.
Tolomelli A.
ARKIVOC
2005,
(vi):
136
8
Typical Experimental Procedure.
To a stirred solution of 1 (1 mmol) in the solvent of choice at r.t. (see Table
[1]
), MCPBA was added in one portion. The reaction was stirred overnight and then diluted with H2O and CH2Cl2 (5 mL). The two phases were separated and the organic layer was dried over Na2SO4 and solvent was removed under reduced pressure. Compounds 2 and 3 were isolated by flash chromatography on silica gel (cyclo-hexane-ethyl acetate, 9:1 as eluent). The characterization of compound 3 is reported in ref. 7d. Commercially available MCPBA was used in the reactions. Purified peracid (according to J. Am. Chem. Soc. 1987, 109, 2770) was less reactive in the epoxidation, due to the lack of acid impurities.
Compound 2a: first diastereomer: R
f
= 0.44 (9:1, cyclo-hexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.02 (3 H, t, J = 7.6 Hz), 1.45-1.81 (2 H, m), 2.89 (1 H, dt, J = 1.8, 5.6 Hz), 3.45 (1 H, d, J = 1.8 Hz), 3.93 (1 H, d, J = 15.0 Hz), 4.59 (1 H, s), 4.97 (1 H, d, J = 15.0 Hz), 7.16-7.44 (10 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.4 (CH3), 24.2 (CH2), 44.9 (CH2), 57.3 (CH), 58.9 (CH), 59.5 (CH), 68.8 (quat), 127.8 (CH), 127.9 (CH), 128.1 (CH), 128.4 (CH), 128.7 (CH), 128.9 (CH), 133.8 (quat), 134.0 (quat), 164.5 (CO). LC-ESI-MS (t
R 15.2 min): m/z = 386/388 [M + 1], 408/410 [M + Na]. IR (film): 2962, 2928, 1775, 1494, 1454, 1392, 1351, 1147, 1072 cm-1. Second diastereomer: R
f
= 0.30 (9:1, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.05 (3 H, t, J = 7.2 Hz), 1.53-1.77 (2 H, m), 3.27 (1 H, d, J = 2.2 Hz), 3.57 (1 H, dt, J = 2.2, 5.6 Hz), 3.91 (1 H, d, J = 15.0 Hz), 4.78 (1 H, s), 4.99 (1 H, d, J = 15.0 Hz), 7.18-7.43 (10 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.6 (CH3), 24.6 (CH2), 44.9 (CH2), 57.6 (CH), 58.7 (CH), 59.4 (CH), 68.4 (quat), 127.7 (CH), 127.9 (CH), 128.2 (CH), 128.4 (CH), 128.7 (CH), 129.0 (CH), 133.7 (quat), 133.9 (quat), 163.4 (CO). LC-ESI-MS (t
R 14.5 min): m/z = 386/388 [M + 1], 408/410 [M + Na]. IR (film): 3073, 2959, 2930, 1771, 1654, 1455, 1395, 1355, 1157, 1077 cm-1.
9a
Alcaide B.
Almendros P.
Curr. Med. Chem.
2004,
11:
1921
9b
Deshmukh ARAS.
Bhawal BM.
Krishnaswamy D.
Govande Vidyesh V.
Shinkre Bidhan A.
Jayanthi A.
Curr. Med. Chem.
2004,
11:
1889
9c
Singh GS.
Tetrahedron
2003,
59:
7631
9d
Miller MJ.
Hsiao CN.
Huang NZ.
Kalish VJ.
Peterson K.
Rajendra G.
Recent Adv. Chem. β-Lactam Antibiot.
1989,
70:
273 ; special publication of the Royal Society of Chemistry, London
9e
Ojima I.
Shimizu N.
Qiu Xiaogang C.
Hauh JC.
Nakahashi K.
Bull. Soc. Chim. Fr.
1987,
4:
649
10a
Hayes BL.
Aldrichimica Acta
2004,
37:
66
10b
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
11a
Hanzlik RP.
Shearer GO.
J. Am. Chem. Soc.
1975,
97:
5231
11b
Kropf H.
Yazdanbachsch MR.
Tetrahedron
1974,
30:
3455
12
Zhang HY.
Sun YM.
Wang XL.
J. Org. Chem.
2002,
67:
2709
13
Ogata Y.
Tabushi I.
J. Am. Chem. Soc.
1961,
83:
3440
14 Microwave-assisted reactions have been performed on a Milestone Microsynth Labstation, dual magnetron system with pyramid diffuser, 1600 W power (800X2), maximum delivered power 1000 W, Easywave software. Conditions: 200 W fixed power, 5 min irradiation.
15a
Cardillo G.
Fabbroni S.
Gentilucci L.
Perciaccante R.
Tolomelli A.
Tetrahedron: Asymmetry
2004,
15:
593
15b
Cardillo G.
De Simone A.
Mingardi A.
Tomasini C.
Synlett
1995,
1131 ; and reference cited therein
16 Compound 5: R
f
= 0.66 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.03 (3 H, t, J = 7.2 Hz), 1.53-1.74 (2 H, m), 2.87 (1 H, dt, J = 1.5, 5.4 Hz), 3.34 (1 H, dd, J = 1.5, 8.4 Hz), 3.85 (1 H, d, J = 8.4 Hz), 5.25 (2 H, s), 7.38 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.6 (CH3), 24.3 (CH2), 43.9 (CH2), 57.0 (CH), 60.5 (CH), 67.9 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 134.8 (quat), 167.5 (CO). IR (film): 3021, 2968, 1744, 1498, 1456, 1380, 1296, 1257, 1157, 1010 cm-1.
Compound 6: R
f
= 0.57 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.04 (3 H, t, J = 7.4 Hz), 1.91-2.06 (2 H, m), 4.24-4.54 (1 H, m), 5.21 (2 H, s), 6.00 (1 H, d, J = 15.4 Hz), 7.03 (1 H, dd, J = 15.4, 9.2 Hz), 7.25 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 12.1 (CH3), 31.2 (CH2), 52.9 (CH2), 66.6 (CH), 121.8 (CH), 128.6 (CH), 128.9 (CH), 129.9 (CH), 134.3 (quat), 135.7 (CH), 163.0 (CO). IR (film): 2955, 1867, 1755, 1442, 1252, 1218, 1994 cm-1.
17
Fujita M.
Ishizuka H.
Ogura K.
Tetrahedron Lett.
1991,
32:
6355
18a
Bonini C.
Righi G.
Synthesis
1994,
225
18b
Wang S.
Howe GP.
Mahal RS.
Procter G.
Tetrahedron Lett.
1992,
33:
3351
19
Ring-Opening of Epoxide 5.
To a stirred solution of epoxide 5 (1 mmol) in 5 mL of dry CH2Cl2 at -78 °C, TiCl4 (1 mL, solution 1 M in CH2Cl2) was added. The reaction was stirred at this temperature for 3 h and then quenched with H2O. After diluting with CH2Cl2, the two phases were separated, the organic one was dried over Na2SO4 and solvent was removed under reduced pressure. Compound 7 was isolated, by flash chromatography on silica gel (cyclohexane-EtOAc, 8:2 as eluant).
Compound 7: R
f
= 0.52 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.08 (3 H, t, J = 7.5 Hz), 1.68-1.85 (1 H, ddq, J = 7.5, 9.3, 14.4 Hz), 1.95-2.09 (1 H, ddq, J = 7.5, 3.0, 14.4 Hz), 3.25 (1 H, d, J = 7.8 Hz), 4.04 (1 H, ddd, J = 3.0, 9.3, 3.0 Hz), 4.12 (1 H, ddd, J = 3.0, 7.8, 5.4 Hz), 4.65 (1 H, d, J = 5.4 Hz), 5.25 (2 H, s), 7.39 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 10.7 (CH3), 25.0 (CH2), 43.9 (CH2), 65.0 (CH), 68.0 (CH), 76.0 (CH), 128.2 (CH), 128.3 (CH), 128.7 (CH), 134.6 (quat), 169.0 (CO). IR (film): 3457, 2953, 2919, 1734, 1261, 1013 cm-1
Formation of Epoxide 8.
To a stirred solution of 7 (1 mmol) in 5 mL of dry THF at 0 °C, NaH (1.1 equiv, 26.5 mg) was added. The reaction was stirred at r.t. for 2 h and then quenched by addition of H2O. After removing THF under reduced pressure, the residue was diluted with EtOAc, and washed twice with H2O. The organic layer was separated, dried over Na2SO4 and solvent was removed under reduced pressure. Compound 8 was isolated, by flash chromatography on silica gel (cyclohexane-EtOAc, 9:1 as eluent).
Compound 8: R
f
= 0.54 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.10 (3 H, t, J = 8.1 Hz), 1.63-1.96 (2 H, m), 3.39 (1 H, dd, J = 1.5, 4.5 Hz), 3.48 (1 H, d, J& nbsp;= 1.5 Hz), 3.50 (1 H, dt, J = 4.5, 8.1 Hz), 5.26 (2 H, s), 7.39 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 10.2 (CH3), 28.9 (CH2), 52.8 (CH2), 59.9 (CH), 61.6 (CH), 67.5 (CH), 128.2 (CH), 128.4 (CH), 128.7 (CH), 134.9 (quat), 167.9 (CO). IR (film): 3034, 2963, 1747, 1497, 1455, 1381, 1264, 1190, 1026 cm-1.