Subscribe to RSS
DOI: 10.1055/s-2005-872102
Synthesis and Characterization of Chiral Imidazolium Salts
Publication History
Publication Date:
25 July 2005 (online)
Abstract
Chiral imidazolium salts that can be classified as ionic liquids (ILs) were derived from the ‘chiral pool’ precursors camphor, β-pinene, and tartaric acid. ILs containing chiral imidazolium cations as well as chiral anions were synthesized. Furthermore, the anion of the IL 1-methyl-3-[(S)-2′-methylbutyl]imidazolium tosylate was substituted on an ion-exchange resin for the chiral (S)-camphorsulfonate anion thus forming the first well-characterized ‘doubly chiral’ IL.
Keywords
imidazolium salts - ionic liquids - chiral anions, chiral cations
- For reviews on ionic liquids, see:
-
1a
Song CE. Chem. Commun. 2004, 1033 -
1b
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667 -
1c
Sheldon R. Chem. Commun. 2001, 2399 -
1d
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 -
1e
Welton T. Chem. Rev. 1999, 99: 2071 -
2a
Arduengo AJ.Harlow RL.Kline M. J. Am. Chem. Soc. 1991, 113: 361 -
2b
Herrmann WA.Köcher C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2162 -
3a
Baudequin C.Baudoux J.Levillain J.Cahard D.Gaumont A.-C.Plaquevent J.-C. Tetrahedron: Asymmetry 2003, 14: 3081 ; and references therein -
3b
Levillain J.Dubant G.Abrunhosa I.Gulea M.Gaumont A.-C. Chem. Commun. 2003, 2914 -
4a
Perry MC.Cui X.Powell MT.Hou D.-R.Reibenspies JH.Burgess K. J. Am. Chem. Soc. 2003, 125: 113 -
4b
Seo H.Park H.-J.Kim BY.Lee JH.Son SU.Chung YK. Organometallics 2003, 22: 618 -
4c
Seiders TJ.Ward DW.Grubbs RH. Org. Lett. 2001, 3: 3325 -
4d
Herrmann WA.Goossen LJ.Köcher C.Artus GRJ. Angew. Chem., Int. Ed. Engl. 1996, 35: 2805 - For non-racemic chiral imidazolium salts, see:
-
5a
Tosoni M.Laschat S.Baro A. Helv. Chim. Acta 2004, 87: 2742 -
5b
Jodry JJ.Mikami K. Tetrahedron Lett. 2004, 45: 4429 -
5c
Bao W.Wang Z.Li Y. J. Org. Chem. 2003, 68: 591 -
5d
Ishida Y.Miyauchi H.Saigo K. Chem. Commun. 2002, 2240 -
5e
Earle MJ.McCormac PB.Seddon KR. Green Chem. 1999, 1: 23 - To the best of our knowledge only two examples thereof exist:
-
6a
Ref. 5e.
-
6b
Fukumoto K.Yoshizawa M.Ohno H. J. Am. Chem. Soc. 2005, 127: 2398 - 7
Horwath J.Al-Hashimy NA. Tetrahedron Lett. 2001, 42: 5777 - 9 For di- and polycationic ILs, see:
Lall SI.Mancheno D.Castro S.Behaj V.Cohen JI.Engel R. Chem. Commun. 2000, 2413 - For chiral dicationic imidazolium salts, see:
-
10a
Clyne DS.Jin J.Genest E.Gallucci JC.Rajan Babu TV. Org. Lett. 2000, 2: 1125 -
10b
Marshall C.Ward MF.Harrison WTA. Tetrahedron Lett. 2004, 45: 5703 - 11
Howarth J.Hanlon K.Fayne D.McCormac P. Tetrahedron Lett. 1997, 38: 3097 - 14
Kagan HB.Dang T.-P. J. Am. Chem. Soc. 1972, 94: 6429 - 15
Fieser L. F.Fieser M. A. Reagents for Organic Synthesis, Vol. 1 Wiley; New York: 1967. p.1179
References
Presumably, methylimidazolium formation is due to Hoffmann type elimination. NMR spectroscopy of crude reaction mixtures indicated concomitant alkene formation.
12The interchange of anions of similar size, such as OTf-, sulfonates, or BF4 - in the usual CH2Cl2-H2O system is not possible.
13We found that the classical ILs BMI·BF4 or BMI·PF6 are obtained in a purer form by the ion-exchange method than by the standard CH2Cl2-H2O extraction method.