Int J Sports Med 2006; 27(4): 296-300
DOI: 10.1055/s-2005-865654
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Altering Pedal Cadence on Cycling Time-Trial Performance

G. Watson1 , T. Swensen1
  • 1Department of Exercise and Sport Sciences, Ithaca College, Ithaca, NY, USA
Further Information

Publication History

Publication Date:
30 August 2005 (online)

Abstract

Our purpose was to examine the effects of altering cadence on 5-mile (8.045 km) time-trial (TT) performance in well-trained amateur male cyclists. Twelve cyclists (mean [SD] age: 24 [4] y; body mass: 70.9 [5.9] kg; and V·O2max: 4.56 [0.52] L · min-1) rode three 5-mile TT. The first was at their freely chosen or preferred cadence (PC); the other two, high cadence (HC; PC + 10.8 %) and low cadence (LC; PC - 9.2 %), were randomly assigned and completed in a counterbalanced crossover design. Subjects rode their own bicycles, fitted with a power meter, and attached to a windload simulator. Practice sessions were completed 2 d prior to each TT. Cadences for PC, LC, and HC were 92 (2), 83 (6), 101 (6) rpm, respectively; they were also significantly different from each other (p < 0.05). LC was 2.5 % faster than HC and more economical than HC and PC (66 [3], 69 [2], 71 [4 W · L-1O2 · min-1, respectively) (p ≤ 0.05). LC heart rate and ventilatory efficiency (V·E/V·O2-ratio) were lower than PC counterparts, while LC and HC minute ventilation (V·E) were less than PC V·E (p < 0.05). LC may be the optimal cadence for 5 mile TT in well-trained amateur male cyclists because LC was the most economical, was faster than HC, resulted in the greatest proportion of fastest times (58 % vs. 25 % and 17 % for PC and HC, respectively), and elicited less cardiorespiratory strain than PC.

References

  • 1 Ahlquist L E, Bassett Jr D R, Sufit R, Nagle F J, Thomas D P. The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise.  Eur J Appl Physiol Occup Physiol. 1992;  65 360-364
  • 2 Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness.  Int J Sports Med. 1984;  5 92-97
  • 3 Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise.  Eur J Appl Physiol Occup Physiol. 1987;  56 679-685
  • 4 Chavarren J, Calbet J A. Cycling efficiency and pedalling frequency in road cyclists.  Eur J Appl Physiol Occup Physiol. 1999;  80 555-563
  • 5 Coast J R, Cox R H, Welch H G. Optimal pedalling rate in prolonged bouts of cycle ergometry.  Med Sci Sports Exerc. 1986;  18 225-230
  • 6 Coast J R, Welch H G. Linear increase in optimal pedal rate with increased power output in cycle ergometry.  Eur J Appl Physiol Occup Physiol. 1985;  53 339-342
  • 7 Gardner A S, Stephens S, Martin D T, Lawton E, Lee H, Jenkins D. Accuracy of SRM and power tap power monitoring systems for bicycling.  Med Sci Sports Exerc. 2004;  36 1252-1258
  • 8 Hagberg J M, Mullin J P, Bahrke M, Limburg J. Physiological profiles and selected psychological characteristics of national class American cyclists.  J Sports Med Phys Fitness. 1979;  19 341-346
  • 9 Hagberg J M, Mullin J P, Giese M D, Spitznagel E. Effect of pedaling rate on submaximal exercise responses of competitive cyclists.  J Appl Physiol. 1981;  51 447-451
  • 10 Hull M L, Gonzalez H K, Redfield R. Optimization of pedaling rate in cycling using a muscle stress-based objective function.  Int J Sport Biomechanics. 1988;  4 1-20
  • 11 Lucia A, Hoyos J, Chicharro J L. Preferred pedalling cadence in professional cycling.  Med Sci Sports Exerc. 2001;  33 1361-1366
  • 12 Lucia A, Hoyos J, Perez M, Santalla A, Chicharro J L. Inverse relationship between V·O2max and economy/efficiency in world-class cyclists.  Med Sci Sports Exerc. 2002;  34 2079-2084
  • 13 Lucia A, Hoyos J, Santalla A, Perez M, Chicharro J L. Kinetics of V·O(2) in professional cyclists.  Med Sci Sports Exerc. 2002;  34 320-325
  • 14 Lucia A, San Juan A F, Montilla M, CaNete S, Santalla A, Earnest C, Perez M. In professional road cyclists, low pedaling cadences are less efficient.  Med Sci Sports Exerc. 2004;  36 1048-1054
  • 15 MacIntosh B R, Neptune R R, Horton J F. Cadence, power, and muscle activation in cycle ergometry.  Med Sci Sports Exerc. 2000;  32 1281-1287
  • 16 Marsh A P, Martin P E. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences.  Med Sci Sports Exerc. 1997;  29 1225-1232
  • 17 Moritani T, Muro M. Motor unit activity and surface electromyogram power spectrum during increasing force of contraction.  Eur J Appl Physiol Occup Physiol. 1987;  56 (3) 260-265
  • 18 Moussay S, Bessot N, Gauthier A, Larue J, Sesboue B, Davenne D. Diurnal variations in cycling kinematics.  Chronobiol Int. 2003;  20 879-892
  • 19 Patterson R P, Moreno M I. Bicycle pedalling forces as a function of pedalling rate and power output.  Med Sci Sports Exerc. 1990;  22 512-516
  • 20 Seabury J J, Adams W C, Ramey M R. Influence of pedalling rate and power output on energy expenditure during bicycle ergometry.  Ergonomics. 1977;  20 491-498
  • 21 Sidossis L S, Horowitz J F, Coyle E F. Load and velocity of contraction influence gross and delta mechanical efficiency.  Int J Sports Med. 1992;  13 407-411
  • 22 Signorile J, Holden S, Coast J R. The feasibility of the windload simulator as an alternative to on-road training.  J Appl Sport Sci Res. 1992;  4 5-8
  • 23 Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.  Med Sci Sports Exerc. 1998;  30 442-449
  • 24 Zoladz J A, Rademaker A C, Sargeant A J. Human muscle power generating capability during cycling at different pedalling rates.  Exp Physiol. 2000;  85 117-124

Greig Watson

Department of Kinesiology
University of Connecticut

Storrs

CT 06269

USA

Phone: + 8604862649

Email: greig.watson@huskymail.uconn.edu