Synthesis 2005(9): 1445-1454  
DOI: 10.1055/s-2005-865316
PAPER
© Georg Thieme Verlag Stuttgart · New York

The Photo-Dehydro-Diels-Alder Reaction: An Efficient Route to Naphthalenes

Pablo Wessig*, Gunnar Müller, Andreas Kühn, Robert Herre, Haiko Blumenthal, Stefanie Troelenberg
Institut für Organische und Bioorganische Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin
Fax: +49(30)20937450; e-Mail: pablo.wessig@chemie.hu-berlin.de;
Further Information

Publication History

Received 10 March 2005
Publication Date:
18 April 2005 (online)

Abstract

The photo-dehydro-Diels-Alder reaction (PDDA), a new photochemical route to naphthalenes is presented. The [4+2] cycloaddition takes place between 3-arylynones and arylacetylenes, in which these moieties may be located in two molecules (intermolecular PDDA, 1) or in the same molecule (intramolecular PDDA, 5 and 9). Especially the latter approach is attractive from a preparative point of view and permits a straightforward access to highly functionalized naphthalenes. The irradiation of unsymmetrical reactants 9 provides, in contrast to symmetrical reactants 5, two isomeric naphthalenes. We found that the regioselectivity can be easily influenced by suitably located substituents in the aromatic rings and by blocking undesired positions. Notably, the PDDA may be used for the preparation of binaphthyls, as shown by the formation of 14 and 16. The mechanism of the PDDA was elucidated by spectroscopic analyses and theoretical (DFT) calculations.

    References

  • 1a Norrish RGW. Appleyard MES. J. Chem. Soc.  1934,  874 
  • 1b Yang NC. Yang D.-DH. J. Am. Chem. Soc.  1958,  80:  2913 
  • 1c Wagner PJ. In CRC Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool WM. Lenci F. CRC Press; Boca Raton: 2003.  p.52 
  • 1d Wagner PJ. In CRC Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool WM. Lenci F. CRC Press; Boca Raton: 2003.  p.58 
  • 1e Wessig P. In Radicals in Organic Synthesis   Renaud P. Sibi MP. VCH-Wiley; Weinheim: 2001. 
  • 1f Wessig P. In CRC Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool WM. Lenci F. CRC Press; Boca Raton: 2003.  p.57 
  • 2a Jones G. Org. Photochem.  1981,  5:  1 
  • 2b Griesbeck AG. In CRC Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool WM. Lenci F. CRC Press; Boca Raton: 2003.  p.59 
  • 2c Griesbeck AG. In CRC Handbook of Organic Photochemistry and Photobiology   2nd ed.:  Horspool WM. Lenci F. CRC Press; Boca Raton: 2003.  p.60 
  • 3 Wessig P. Mühling O. In Synthetic Organic Photochemistry   Griesbeck AG. Mattay J. Marcel Decker; New York: 2005.  p.41-88  
  • 5 Michael A. Bucher JE. Ber. Dtsch. Chem. Ges.  1895,  28:  2511 
  • 6 Pfeiffer P. Möller W. Ber. Dtsch. Chem. Ges.  1907,  40:  3841 
  • 7a Bucher JE. J. Am. Chem. Soc.  1910,  32:  212 
  • 7b Haworth RD. Sheldrick G. J. Chem. Soc.  1935,  636 
  • 7c Haworth RD. Kelly W. J. Chem. Soc.  1936,  745 
  • 7d Baddar FG. El-Assal LS. Doss NA. J. Chem. Soc.  1959,  1027 
  • 7e Brown D. Stevenson R. J. Org. Chem.  1965,  30:  1759 
  • 7f Klemm LH. Gopinath KW. Lee DH. Kelley FW. Trod E. McGuire TM. Tetrahedron  1966,  22:  1797 
  • 8 Whitlock HW. Wu E.-M. Whitlock BJ. J. Org. Chem.  1969,  34:  1857 
  • 9 Müller E. Sauerbier M. Streichfuß D. Thomas R. Winter W. Zountsas G. Liebigs Ann. Chem.  1971,  750:  63 
  • 10 Müller E. Odenigbo G. Liebigs Ann. Chem.  1975,  1435 
  • 11 Wagner F. Meier H. Tetrahedron  1974,  30:  773 
  • 12a Chabala JC. Vincent JE. Tetrahedron Lett.  1978,  19:  937 
  • 12b Yamaguchi M. Shibato K. Fujiwara S. Hirao I. Synthesis  1986,  421 
  • 12c Doubsky J. Streinz L. Leseticky L. Koutek B. Synlett  2003,  937 
  • 13 Yashina OG. Sarwaa TW. Kaigorodowa TD. Wereschtschagin LI. J. Org. Chem. USSR (Engl. Transl.)  1968,  4:  2032 ; Zh. Org. Khim.; 1968, 4: 2104
  • 14a Dess DB. Martin JC. J. Org. Chem.  1983,  48:  4156 
  • 14b Dess DB. Martin JC. J. Am. Chem. Soc.  1991,  113:  7277 
  • 15a Miyashita A. Yasuda A. Takaya H. Toriumi K. Ito T. Souchi T. Notori R. J. Am. Chem. Soc.  1980,  102:  7932 
  • 15b Takaya H. Mashima K. Koyano K. Yagi M. Kumobayashi H. Taketomi T. Akutagawa S. Notori R. J. Org. Chem.  1986,  51:  629 
  • 17 El-Sayed MA. J. Chem. Phys.  1963,  38:  2834 
  • 18 Woodward RB. Hoffmann R. J. Am. Chem. Soc.  1965,  87:  395 
  • 19a Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 19b Lee C. Yang W. Parr RG. Phys. Rev. B  1988,  37:  785 
  • 19c Miehlich B. Savin A. Stoll H. Preuss H. Chem. Phys. Lett.  1989,  157:  200 
  • 19d Parr RG. Yang W. Density-Functional Theory of Atom and Molecules   Oxford University Press; New York: 1989. 
  • 20a Ditchfield R. Hehre WJ. Pople JA. J. Chem. Phys.  1971,  54:  724 
  • 20b Hariharan PC. Pople JA. Chem. Phys. Lett.  1972,  66:  217 
  • 20c Rassolov VA. Ratner MA. Pople JA. Redfern PC. Curtiss LA. J. Comp. Chem.  2001,  22:  976 
  • 20d McLean AD. Chandler GS. J. Chem. Phys.  1980,  72:  5639 
  • 20e Krishnan R. Binkley JS. Seeger R. Pople JA. J. Chem. Phys.  1980,  72:  650 
  • 21 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick KD. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision B.04   Gaussian, Inc.; Pittsburgh PA: 2003. 
  • 22a Scaiano JC. Tetrahedron  1982,  38:  819 
  • 22b Salem L. Rowland C. Angew. Chem., Int. Ed. Engl.  1972,  11:  92 
  • 22c Griesbeck AG. Mauder H. Stadtmüller S. Acc. Chem. Res.  1994,  27:  70 
  • 23 The energies of all singlet species were spin corrected using the method of Yamaguchi: Yamaguchi K. Jensen F. Dorigo A. Houk KN. Chem. Phys. Lett.  1988,  149:  537 
  • 24 The charge distribution was evaluated by the Atomic Polar Tensors (APT) method: Cioslowski J. J. Am. Chem. Soc.  1989,  111:  8333 
4

The introduction of electron-donating groups, which facilitate oxidative degradation of aromatic rings, reduce the Norrish-Yang reactivity of corresponding ketones dramatically.1c,d

16

We thank Dr. B. Ziemer for performing the X-ray structure analysis of 16. Details of the structure investigation are available on request from the Cambridge Crystallographic Data Centre, on quoting the depository number CCDC 266349.