Synlett 2005(6): 1012-1014  
DOI: 10.1055/s-2005-864814
LETTER
© Georg Thieme Verlag Stuttgart · New York

Condition-Driven Selective Syntheses of Dialkyl Diselenides Involving Elemental Selenium and Sodium Borohydride

Alain Krief*a, Michel Derocka,b
a Laboratoire de Chimie Organique de Synthèse, Facultés Universitaires N.-D. de la Paix, 61 Rue de Bruxelles, Namur 5000, Belgium
b Fonds pour la Formation à la Recherche dans l’Industrie et l’Agriculture, 5 Rue d’Egmont, Bruxelles 1000, Belgium
Fax: +32(81)724536; e-Mail: alain.krief@fundp.ac.be;
Further Information

Publication History

Received 4 January 2005
Publication Date:
23 March 2005 (online)

Abstract

Dialkyl diselenides have been prepared from alkyl ­halides, sodium borohydride and elemental selenium using two ­different methods. One of them involves the intermediate formation of diselenide dianion equivalent (-SeSe-).

    References

  • 1a Rheinboldt H. Schwefel-, Selen-, Tellur-Verbindungen In Houben-Weyl, Methoden der Organischen Chemie   Vol. 9:  Müller E. Georg Thieme; Stuttgart: 1967. 
  • 1b Organic Selenium Compounds: Their Chemistry and Biology   Klayman DL. Gunther WHH. John Wiley and Sons; Chichester: 1973. 
  • 1c Paulmier C. In Selenium Reagents and Intermediates in Organic Synthesis   Vol. 5:  Baldwin JE. Pergamon; Oxford: 1986. 
  • 1d The Chemistry of Organic Selenium and Tellurium Compounds   Vol. 2:  Patai S. Rappoport Z. John Wiley and Sons; Chichester: 1987. 
  • 1e Krief A. In Comprehensive Organometallic Chemistry II   Vol. 11:  Abel EW. Stone FGA. Wilkinson G. McKillop A. Pergamon; Oxford: 1995.  p.516 
  • Reduction of Se0 using hydrides:
  • 2a Klayman DL. Griffin TS. J. Am. Chem. Soc.  1973,  95:  197 
  • 2b Gladysz JA. Hornby JL. Garbe JE. J. Org. Chem.  1978,  43:  1204 
  • 2c Bergman JJ. Engman L. Synthesis  1980,  569 
  • 2d Yarada K. Fujita T. Yanada R. Synlett  1998,  971 
  • 2e Hideharu I. Mamoru K. Yoshihisa F. Futoshi N. J. Am. Chem. Soc.  2001,  123:  8408 
  • 2f Yang X. Wang Q. Tao Y. Xu H. J. Chem. Res., Synop.  2002,  160 
  • 2g Krief A. Derock M. Tetrahedron Lett.  2002,  43:  3083 
  • Reduction of Se0 using metals:
  • 3a Brandsma L. Wijers HE. Recl. Trav. Chim. Pays-Bas  1963,  82:  68 
  • 3b Thompson D. Boudjouk P. J. Org. Chem.  1988,  53:  2109 
  • 3c Syper L. Mlochowski J. Tetrahedron  1988,  44:  611 
  • 3d Ping L. Xunjun Z. Synth. Commun.  1993,  23:  1721 
  • 4 Reduction of Se0 using metal salts: Sekiguchi M. Tanaka H. Takami N. Ogawa A. Ryu I. Sonoda N. Heteroatom Chem.  1991,  427 
  • Reduction of Se0 using hydrazines:
  • 5a Syper L. Mlochowski J. Synthesis  1984,  439 
  • 5b Eggert H. Nielsen O. Henriksen L. J. Am. Chem. Soc.  1986,  108:  1725 
  • 5c Li JQ. Bao WL. Lue P. Zhou X.-J. Synth. Commun.  1991,  21:  799 
  • 6 Reduction of Se0 using metal hydroxysulfoxylates: Bird ML. Challenger F. J. Chem. Soc.  1942,  570 
  • 7 Reaction of aldehydes with ‘dimetal diselenides and dimetal selenides mixture’: Huang Z.-ZH. Liu F.-Y. Du J.-X. Huang X. OPPI Briefs  1995,  27:  492 
  • 8 Alkylation of metal organic diselenolates: Krief A. Van Wemmel T. Redon M. Dumont W. Delmotte C. Angew. Chem. Int. Ed.  1999,  38:  2245 
  • Oxidation of organic selenols or selenolates using oxygen:
  • 9a Fujiwara S. Miyoshi SN. Ogawa A. Kambe N. Sonoda N. J. Phys. Org. Chem.  1989,  359 
  • 9b Clarembeau M. Cravador A. Dumont W. Hevesi L. Krief A. Lucchetti J. Van Ende D. Tetrahedron  1985,  41:  4793 
  • 9c Oae S. Togo H. Bull. Chem. Soc. Jpn.  1984,  57:  232 
  • 10 Oxidation of organic selenols or selenolates using perborate: McKillop A. Koyuncu D. Krief A. Dumont W. Renier P. Trabelsi M. Tetrahedron Lett.  1990,  31:  5007 
  • Oxidation of organic selenols or selenolates using peroxides:
  • 11a Klapoetke T. Koepf H. Gowik P. J. Chem. Soc., Dalton Trans.  1988,  1529 
  • 11b Krief A. De Mahieu AF. Dumont W. Trabelsi M. Synthesis  1988,  131 
  • 11c Reich HJ. Jasperse CP. J. Am. Chem. Soc.  1987,  109:  5549 
  • Oxidation of organic selenols or selenolates using iodine:
  • 12a Block E. Birringer M. Jiang W. Nakahodo T. Thompson HJ. Toscano UPJ. Zhang H. Zhu X. J. Agric. Food Chem.  2001,  49:  458 
  • 12b Meinke PT. Krafft GA. Guram AJ. J. Org. Chem.  1988,  53:  3632 
  • 13a Krief A. Trabelsi M. Dumont W. Derock M. Synlett  2004,  1751 
  • 13b

    Synthesized by protonation (formic acid, 2.5-4 equiv) of selenide dianion equivalent [from elemental selenium, NaBH4 and EtOH (1:2:6) in DMF]. [13a]

  • 15 We have been unable to determine the structure of these species by 77Se NMR. For a related work see: Cusik J. Dance I. Polyhedron  1991,  10:  2629 
  • 16a

    in fact, we found in a control experiment that 6 molar equiv of dihydrogen escape from the medium (experimentally 97% of this amount) on reaction of selenium, NaBH4 and EtOH (1:2:6 mol equiv).

  • 16b

    Another 0.81 molar equiv of dihydrogen is evolved if aq EtOH (4 molar equiv each), is added before that of the second crop of elemental selenium.

  • 17a Liotta D. Sunay U. Santiesteban H. Markiewick W. J. Org. Chem.  1981,  46:  2605 
  • 17b Dowd P. Kennedy P. Synth. Commun.  1991,  935 
  • 17c Krief A. Trabelsi M. Dumont W. Synthesis  1992,  933 
  • 17d Krief A. Trabelsi M. Synth. Commun.  1989,  19:  1203 
  • 17e Pedersen ML. Berkovictz DB. J. Org. Chem.  1993,  58:  6966 
  • 18 Miyashita M. Hosshino M. Yoshikoshi A. Tetrahedron Lett.  1988,  29:  347 
14

Typically mixing elemental selenium, NaBH4 and EtOH (1:1:3 molar equiv each) leads to the evolvement of dihydrogen (2.58 molar equiv, 86% of the expected amount), sequential addition of DMF and decyl bromide produces an additional formation of hydrogen (0.42 molar equiv, 14% of the expected amount).