Semin Liver Dis 2005; 25(1): 84-92
DOI: 10.1055/s-2005-864784
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Merging Models of Hepatitis C Virus Pathogenesis

Hans L. Tillmann1 , Michael P. Manns2 , 3 , K. Lenhard Rudolph3
  • 1Professor, Medizinische Klinik und Poliklinik II, Universität Leipzig, Germany
  • 2Chairman, Medizinische Klinik und Poliklinik II, Universität Leipzig, Germany
  • 3Department of Gastroenterology, Hepatology and Endocrinology, Medical School of Hannover, Carl-Neuberg-Str. 1, Germany
Further Information

Publication History

Publication Date:
25 February 2005 (online)

ABSTRACT

Chronic hepatitis C virus (HCV) infection is one of the major causes for development of liver cirrhosis and end-stage liver disease. This article reviews two contrasting models of HCV pathogenesis, discusses the merits of each, and presents a rationale for combining the two models into one. Any successful model of HCV pathogenesis must explain how the characteristic features of cirrhosis and end-stage liver disease arise. These features include the loss of hepatocyte function (low serum albumin and reduced clotting ability); the presence of regenerative nodules; and the deposition of excessive extracellular matrix material, especially collagen (fibrosis), which is associated with the transformation of the liver sinusoids to capillary-like structures leading to portal hypertension. A successful model should explain several observations about the rate of disease progression. HCV is characterized by slow progression of fibrogenesis and, importantly, cirrhosis seems to develop only after a long latency (and only in a subset of patients). Among the prognostic factors of disease progression, the age at infection with the HCV virus and the presence of fibrosis appear to be highly relevant in predicting the development of progressive fibrosis. Traditional models of HCV pathogenesis propose that fibrogenesis is the predominant process. Fibrogenesis is induced by activation of fibrogenic cells, such as stellate cells, which results in excessive collagen deposition. By altering the normal architecture and vasculature, the collagen bands finally lead to cirrhosis and loss of organ function. Activation of stellate cells is induced by inflammation, cytokine signaling, and possibly by hepatocyte apoptosis. The telomere model of HCV pathogenesis suggests that hepatocyte damage plays an essential role in the development of cirrhosis. According to this model, hepatocyte damage leads to increased cell turnover, and to the accelerated shortening of hepatocyte telomeres. Critical telomere shortening leads to hepatocyte senescence, loss of hepatocyte function, exhaustion of hepatocellular regeneration, and to a greatly enhanced fibrotic response to injury. This review summarizes both models and presents evidence that these models are not mutually exclusive but rather can be merged into a comprehensive pathogenesis model that outlines the pathway of HCV-induced cirrhosis.

REFERENCES

  • 1 Alter H J, Purcell R H, Shih J W et al.. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis.  N Engl J Med. 1989;  321 1494-1500
  • 2 Alter M J, Margolis H S, Krawczynski K et al.. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team.  N Engl J Med. 1992;  327 1899-1905
  • 3 Tong M J, el-Farra N S, Reikes A R, Co R L. Clinical outcomes after transfusion-associated hepatitis C.  N Engl J Med. 1995;  332 1463-1466
  • 4 Wiese M, Berr F, Lafrenz M et al.. Low frequency of cirrhosis in a hepatitis C (genotype 1b) single-source outbreak in Germany: a 20-year multicenter study.  Hepatology. 2000;  32 91-96
  • 5 Rodger A J, Roberts S, Lanigan A et al.. Assessment of long-term outcomes of community-acquired hepatitis C infection in a cohort with sera stored from 1971 to 1975.  Hepatology. 2000;  32 582-587
  • 6 Kenny-Walsh E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. Irish Hepatology Research Group.  N Engl J Med. 1999;  340 1228-1233
  • 7 Rai R, Wilson L E, Astemborski J et al.. Severity and correlates of liver disease in hepatitis C virus-infected injection drug users.  Hepatology. 2002;  35 1247-1255
  • 8 Tillmann H L. Hepatitis C virus infection.  N Engl J Med. 2001;  345 1426
  • 9 Morgello S. The nervous system and hepatitis C virus.  Semin Liver Dis. 2005;  25 118-121
  • 10 Ockenga J, Tillmann H L, Trautwein C et al.. Hepatitis B and C in HIV-infected patients. Prevalence and prognostic value.  J Hepatol. 1997;  27 18-24
  • 11 Darby S C, Ewart D W, Giangrande P L et al.. Mortality from liver cancer and liver disease in haemophilic men and boys in UK given blood products contaminated with hepatitis C. UK Haemophilia Centre Directors' Organisation.  Lancet. 1997;  350 1425-1431
  • 12 Bjoro K, Froland S S, Yun Z et al.. Hepatitis C infection in patients with primary hypogammaglobulinemia after treatment with contaminated immune globulin.  N Engl J Med. 1994;  331 1607-1611
  • 13 Dore G J, Thomas D L. Management and treatment of injection drug users with hepatitis C virus (HCV) monoinfection and HCV/human immunodeficiency virus coinfection.  Semin Liver Dis. 2005;  25 8-32
  • 14 Bräu N. Treatment of chronic hepatitis C in human immunodeficiency virus/hepatitis C virus-coinfected patients in the era of pegylated interferon and ribavirin.  Semin Liver Dis. 2005;  25 33-51
  • 15 Brau N, Rodriguez-Torres M, Salvatore M et al.. Control of HIV viral load through highly active antiretroviral therapy (HAART) slows down liver fibrosis progression in HIV/HCV-coinfection and makes it the same as in HCV-monoinfection. The Puerto Rico-New York Hepatitis C Study Group.  J Hepatol. 2004;  , In press
  • 16 Castellino S, Lensing S, Riely C et al.. The epidemiology of chronic hepatitis C infection in survivors of childhood cancer: an update of the St Jude Children's Research Hospital hepatitis C seropositive cohort.  Blood. 2004;  103 2460-2466
  • 17 Vogt M, Lang T, Frosner G et al.. Prevalence and clinical outcome of hepatitis C infection in children who underwent cardiac surgery before the implementation of blood-donor screening.  N Engl J Med. 1999;  341 866-870
  • 18 Pawlotsky J M. Pathophysiology of hepatitis C virus infection and related liver disease.  Trends Microbiol. 2004;  12 96-102
  • 19 Poynard T, McHutchison J, Manns M et al.. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C.  Gastroenterology. 2002;  122 1303-1313
  • 20 Nevens F, Roskams T, Van Vlierberghe H et al.. A pilot study of therapeutic vaccination with envelope protein E1 in 35 patients with chronic hepatitis C.  Hepatology. 2003;  38 1289-1296
  • 21 Heller T, Rehermann B. Acute hepatitis C: a multifaceted disease.  Semin Liver Dis. 2005;  25 7-17
  • 22 Peters M G, Terrault N A. Alcohol use and hepatitis C.  Hepatology. 2002;  36 S220-S225
  • 23 Hezode C, Lonjon I, Roudot-Thoraval F et al.. Impact of moderate alcohol consumption on histological activity and fibrosis in patients with chronic hepatitis C, and specific influence of steatosis: a prospective study.  Aliment Pharmacol Ther. 2003;  17 1031-1037
  • 24 Pessione F, Ramond M J, Njapoum C et al.. Cigarettte smoking and hepatic lesions in patients with chronic hepatitis C.  Hepatology. 2001;  34 121-125
  • 25 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups.  Lancet. 1997;  349 825-832
  • 26 Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C.  Hepatology. 2002;  36(suppl 1) S46-S56
  • 27 Pradat P, Voirin N, Tillmann H L, Fazly T, Chevallier M, Trepo C. Progression to cirrhosis: an age-dependent process.  Hepatology. 2004;  40 , In press
  • 28 Poynard T, Radziu V, Charlotte F et al.. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C.  J Hepatol. 2001;  34 730-739
  • 29 Ryder S D. Trent Hepatitis C Study Group. Progression of hepatic fibrosis in patients with hepatitis C: a prospective repeat liver biopsy study.  Gut. 2004;  53 451-455
  • 30 Velidedeoglu E, Mange K C, Frank A et al.. Factors differentially correlated with the outcome of liver transplantation in hcv + and HCV - recipients.  Transplantation. 2004;  77 1834-1842
  • 31 Neumann U P, Berg T, Bahra M et al.. Long-term outcome of liver transplants for chronic hepatitis C: a 10-year follow-up.  Transplantation. 2004;  77 226-231
  • 32 Berenguer M, Prieto M, San Juan F et al.. Contribution of donor age to the recent decrease in patient survival among HCV-infected liver transplant recipients.  Hepatology. 2002;  36 202-210
  • 33 Machicao V I, Bonatti H, Krishna M et al.. Donor age affects fibrosis progression and graft survival after liver transplantation for hepatitis C.  Transplantation. 2004;  77 84-92
  • 34 Paradis V, Mathurin P, Laurent A et al.. Histological features predictive of liver fibrosis in chronic Hepatitis C infection.  J Clin Pathol. 1996;  49 1-7
  • 35 Ghany M G, Kleiner D E, Alter H J et al.. Progression of fibrosis in early stages of chronic hepatitis C.  Hepatology. 2000;  32 496A
  • 36 Yano M, Kumada H, Kage M et al.. The long-term pathological evolution of chronic hepatitis C.  Hepatology. 1996;  23 1334-1340
  • 37 Monto A, Patel K, Bostrom A et al.. Risks of a range of alcohol intake on hepatitis C-related fibrosis.  Hepatology. 2004;  39 826-834
  • 38 Hickman I J, Clouston A D, Macdonald G A et al.. Effect of weight reduction on liver histology and biochemistry in patients with chronic hepatitis C.  Gut. 2002;  51 89-94
  • 39 Hickman I J, Powell E E, Prins J B et al.. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy.  J Hepatol. 2003;  39 1042-1048
  • 40 André P, Perlemuter G, Budkowska A, Bréchot C, Lotteau V. Hepatitis C virus particles and lipoprotein metabolism.  Semin Liver Dis. 2005;  25 93-104
  • 41 Kleiner D E. The liver biopsy in chronic hepatitis C: A view from the other side of the microscope.  Semin Liver Dis. 2005;  25 52-64
  • 42 Powel E E, Edwards-Smith C J, Hay J L et al.. Host genetic factors influence disease progression chronic hepatitis C.  Hepatology. 2000;  31 828-833
  • 43 Sonzogni L, Silvestri L, De Silvestri A et al.. Polymorphisms of microsomal epoxide hydrolase gene and severity of HCV-related liver disease.  Hepatology. 2002;  36 195-201
  • 44 Wright M, Goldin R, Hellier S et al.. Factor V Leiden polymorphism and the rate of fibrosis development in chronic hepatitis C virus infection.  Gut. 2003;  52 1206-1210
  • 45 Akuta N, Chayama K, Suzuki F et al.. Risk factors of hepatitis C virus-related liver cirrhosis in young adults: positive family history of liver disease and transporter associated with antigen processing 2(TAP2)*0201 allele.  J Med Virol. 2001;  64 109-116
  • 46 Promrat K, McDermott D H, Gonzalez C M et al.. Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C.  Gastroenterology. 2003;  124 352-360
  • 47 Muhlbauer M, Bosserhoff A K, Hartmann A et al.. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease.  Gastroenterology. 2003;  125 1085-1093
  • 48 Rojkind M, Greenwel P. Pathophysiology of liver fibrosis. In: Arias IM, Boyer JL, Chisari FV, et al, The Liver Biology and Pathobiology, 4th ed. 2001: 722-738
  • 49 Freidman S L. Liver fibrosis-from bed to bedside.  J Hepatol. 2003;  38 S38-S53
  • 50 Friedman S L. Cytokines and fibrogenesis.  Semin Liver Dis. 1999;  19 129-140
  • 51 Greenwel P, Dominguez-Rosales J A, Mavi G et al.. Hydrogen peroxide: a link between acetaldehyde-elicited alpha1(I) collagen gene up-regulation and oxidative stress in mouse hepatic stellate cells.  Hepatology. 2000;  31 109-116
  • 52 Canbay A, Taimr P, Torok N et al.. Apoptotic body engulfment by a human stellate cell line is profibrogenic.  Lab Invest. 2003;  83 655-663
  • 53 Canbay A, Feldstein A E, Higuchi H et al.. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression.  Hepatology. 2003;  38 1188-1198
  • 54 Bataller R, Paik Y H, Lindquist J N et al.. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells.  Gastroenterology. 2004;  126 529-540
  • 55 Schuppan D, Krebs A, Bauer M, Hahn E G. Hepatitis C and liver fibrosis.  Cell Death Differ. 2003;  10 S59-S67
  • 56 Buck M, Kim D J, Houglum K et al.. C-Myb modulates transcription of α-smooth-muscle actin gene in activated hepatic stellate cells.  Am J Physiol Gastrointest Liver Physiol. 2000;  278 G321-G328
  • 57 Lee K S, Buck M, Houglum K et al.. Activation of hepatic stellate cells by TGFβ and collagen type I is mediated by oxidative stress through c-myb expression.  J Clin Invest. 1995;  96 2461-2468
  • 58 Hellerbrand C, Jobin C, Licato L L et al.. Cytokines induce NF-κB in activated but not quiescent rat hepatic stellate cells.  Am J Physiol. 1998;  275 G269-G278
  • 59 Rippe R A, Almounajed G, Brenner D A. SP1 binding activity increases in activated Ito cells.  Hepatology. 1995;  22 241-251
  • 60 Stefanovic B, Hellerbrand C, Holcik M et al.. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.  Mol Cell Biol. 1997;  17 5201-5209
  • 61 Rudolph K L, DePinho R A. Telomeres and telomerase in experimental liver cirrhosis. In: Arias IM, Boyer JL, Chisari FV, et al. The Liver Biology and Pathobiology, 4th ed. 2001: 1001-1010
  • 62 Blackburn E H. Structure and function of telomeres.  Nature. 1991;  350 569-573
  • 63 Griffith J D, Comeau L, Rosenfield S et al.. Mammalian telomeres end in a large duplex loop.  Cell. 1999;  97 503-514
  • 64 Lundblad V. The end replication problem: more than one solution.  Nat Med. 1997;  3 1198-1199
  • 65 Greider C W, Blackburn E H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis.  Nature. 1989;  337 331-337
  • 66 Meyerson M, Counter C M, Eaton E N et al.. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.  Cell. 1997;  90 785-795
  • 67 Nakamura T M, Morin G B, Chapman K B et al.. Telomerase catalytic subunit homologs from fission yeast and human.  Science. 1997;  277 955-959
  • 68 Nakayama J, Tahara H, Tahara E et al.. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas.  Nat Genet. 1998;  18 65-68
  • 69 Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts.  Nature. 1990;  345 458-460
  • 70 Wright W E, Shay J W. The two-stage mechanism controlling cellular senescence and immortalization.  Exp Gerontol. 1992;  27 383-389
  • 71 Dimri G P, Campisi J. Molecular and cell biology of replicative senescence.  Cold Spring Harb Symp Quant Biol. 1994;  59 67-73
  • 72 Wege H, Le H T, Chui M S et al.. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential.  Gastroenterology. 2003;  124 432-444
  • 73 Bodnar A G, Ouellette M, Frolkis M et al.. Extension of life-span by introduction of telomerase into normal human cells.  Science. 1998;  279 349-352
  • 74 Lechel A, Manns M P, Rudolph K L. Telomeres and telomerase: new targets for the treatment of liver cirrhosis and hepatocellular carcinoma.  J Hepatol. 2004;  41 491-497
  • 75 Wiemann S U, Satyanarayana A, Tsahuridu M et al.. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis.  FASEB J. 2002;  16 935-942
  • 76 Livni N, Eid A, Ilan Y et al.. p53 expression in patients with cirrhosis with and without hepatocellular carcinoma.  Cancer. 1995;  75 2420-2426
  • 77 Albrecht J H, Meyer A H, Hu M Y. Regulation of cyclin-dependent-kinase inhibitor p21(WAF/Cip1/Sdi1) gene expression in hepatic regeneration.  Hepatology. 1997;  25 557-563
  • 78 Delhaye M, Louis H, Degraef C et al.. Relationship between hepatocyte proliferative activity and liver function reserve in human cirrhosis.  Hepatology. 1996;  23 1003-1011
  • 79 Delhaye M, Lousi H, Degraef C et al.. Hepatocyte proliferative activity in human liver cirrhosis.  J Hepatol. 1999;  30 461-471
  • 80 Kaita K D, Pettigrew N, Minuk G Y. Hepatic regeneration in humans with various liver disease as assessed by Ki-67 staining of formalin-fixed paraffin-embedded liver tissue.  Liver. 1997;  17 13-16
  • 81 Blasco M A, Lee H W, Hande M P et al.. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA.  Cell. 1997;  91 25-34
  • 82 Rudolph K L, Chang S, Millard M et al.. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery.  Science. 2000;  287 1253-1258
  • 83 Satyanarayana A, Wiemann S U, Buer J et al.. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells.  EMBO J. 2003;  22 4003-4013
  • 84 Shelton D N, Chang E, Whittier P S et al.. Microarray analysis of replicative senescence.  Curr Biol. 1999;  9 939-945
  • 85 Schnabl B, Purbeck C A, Choi Y H et al.. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype.  Hepatology. 2003;  37 653-664
  • 86 Nieto N, Friedman S L, Cederbaum A I. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species.  Hepatology. 2002;  35 62-73
  • 87 Issa R, Zhou X, Trim N et al.. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration.  FASEB J. 2003;  17 47-49
  • 88 Sato R, Maesawa C, Fujisawa K et al.. Prevention of critical telomere shortening by oestradiol in human normal hepatic cultured cells and carbon tetrachloride induced rat liver fibrosis.  Gut. 2004;  53 1001-1009

 Dr.
K. Lenhard Rudolph

Department of Gastroenterology, Hepatology, and Endocrinology, Medical School of Hannover

Carl-Neuberg-Str. 1, 30625 Hannover, Germany

Email: Rudolph.Lenhard@MH-Hannover.de

Hans L Tillmann

Medizinische Klinik und Poliklinik II, Universität Leipzig

Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany

Email: hans.tillmann@medizin.uni-leipzig.de