Horm Metab Res 2005; 37(3): 140-145
DOI: 10.1055/s-2005-861291
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

SAPK/JNK Plays a Role in Transforming Growth Factor-β-induced VEGF Synthesis in Osteoblasts

Y.  Kanno1, 2 , A.  Ishisaki1 , M.  Yoshida1 , H.  Tokuda2, 3 , O.  Numata2 , O.  Kozawa1
  • 1Department of Pharmacology, Gifu University School of Medicine, Japan
  • 2Institute of Biological Science, University of Tsukuba, Ibaraki, Japan
  • 3Department of Internal Medicine, Chubu National Hospital, National Institute for Longevity Sciences, Obu, Aichi, Japan
Weitere Informationen

Publikationsverlauf

Received 25 May 2004

Accepted after revision 20 September 2004

Publikationsdatum:
12. April 2005 (online)

Abstract

We previously reported that transforming growth factor-β (TGF-β) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-β-induced VEGF synthesis in these cells. TGF-β markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-β-induced VEGF synthesis. SP600125 suppressed TGF-β-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-β-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-β-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-β activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-β-induced VEGF synthesis.

References

  • 1 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor.  Endocr Rev. 1997;  18 4-25
  • 2 Gerber H-P, Vu T H, Ryan A M, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.  Nat Med. 1999;  5 623-628
  • 3 Goad D L, Rubin J, Wang H, Tashijian A H Jr, Patterson C. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I.  Endocrinology. 1996;  137 2262-2268
  • 4 Wang D S, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K. Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells.  J Bone Miner Res. 1996;  11 472-479
  • 5 Schalaeppi J M, Gutzwiller S, Finlenzeller G, Fournier B. 1,25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells.  Endocr Res. 1997;  23 213-229
  • 6 Nijweide P J, Burger E H, Feyen J HM. Cells of bone: proliferation, differentiation, and humoral regulation.  Physiol Rev. 1986;  66 855-886
  • 7 Erlebacher A, Filvaroff E H, Girelman S E, Derynck R. Toward a molecular understanding of skeletal development.  Cell. 1995;  80 371-378
  • 8 Saadeh P B, Mehrara B J, Steinbrech D S, Dudziak M E, Greenwald J A, Luchs J S, Spector J A, Ueno H, Gittes G K, Longaker M T. Transforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts.  American J Physiol. 1999;  277 C628-C637
  • 9 Chua C C, Hamdy R C, Chua B H. Mechanism of transforming growth factor-β-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells.  Biochim Biophys Acta. 2000;  1497 69-76
  • 10 Massague J, Blain S W, Lo R S. TGF-β signaling in growth control, cancer, and heritable disorders.  Cell. 2000;  103 295-309
  • 11 Bonewald L F. Transforming growth factor-beta. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, 2nd ed. San Diego; Academic Press 2002: 903-918
  • 12 Heldin C H, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins.  Nature. 1997;  390 465-471
  • 13 Massague J. TGF-β signal transduction.  Ann Rev Biochem. 1998;  67 753-791
  • 14 Miyazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-β/BMP signaling.  J Cell Physiol. 2001;  187 265-276
  • 15 Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.  Physiol Rev. 1999;  79 143-180
  • 16 Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction.  Science. 1995;  270 2008-2011
  • 17 Palcy S, Goltzman D. Protein kinase signalling pathways involved in the up-regulation of the rat alpha1(I) collagen gene by transforming growth factor β1 and bone morphogenetic protein 2 in osteoblastic cells.  Biochem J. 1999;  343 21-27
  • 18 Hatakeyama D, Kozawa O, Niwa M, Matsuno H, Ito H, Kato K, Tatematsu N, Shibata T, Uematsu T. Upregulation by retinoic acid of transforming growth factor-β-stimulated heat shock protein 27 induction in osteoblasts: involvement of mitogen-activated protein kinases.  Biochim Biophys Acta. 2002;  1589 15-30
  • 19 Tokuda H, Hatakeyama D, Akamatsu S, Tanabe K, Yoshida M, Shibata T, Kozawa O. Involvement of MAP kinases in TGF-β-stimulated vascular endothelial growth factor synthesis in osteoblasts.  Arch Biochem Biophys. 2003;  415 117-125
  • 20 Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vivo differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria.  J Cell Biol. 1983;  96 191-198
  • 21 Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells.  Exp Cell Res. 1992;  198 130-134
  • 22 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 23 Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T. Modulation of the stress-induced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 glioma cells.  J Neurochem. 1996;  66 946-950
  • 24 Bennett B L, Sasaki D T, Murray B W, O’Leary E C, Sakata S T, Xu W, Leisten J C, Motiwala A, Pierce S, Satoh Y, Bhagwat S S, Manning A M, Anderson D W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal Kinase.  Proc Natl Acad Sci USA. 2001;  98 13 681-13 686
  • 25 Alessi D R, Cuenda A, Cohen P, Dudley D T, Saltiel A R. PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo.  J Biol Chem. 1995;  270 27 489-27 494
  • 26 Cuenda A, Rouse J, Doza Y N, Meier R, Cohen P, Gallagher T F, Young P R, Lee J C. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.  FEBS Lett. 1995;  364 229-233
  • 27 Raingeaud J, Gupta S, Rogers J S, Dickens M, Han J, Ulevitch R J, David R J. Pro-inflammatory cytokines and enviromental stress cause p38 MAP kinase activation by dual phosphorylation on tyrosine and threonine.  J Biol Chem. 1995;  270 7420-7426
  • 28 Kanno Y, Tokuda H, Nakajima K, Ishisaki A, Shibata T, Numata O, Kozawa O. Involvement of SAPK/JNK in prostaglandin E(1)-induced VEGF synthesis in osteoblast-like cells.  Mol Cell Endocrinol.. 2004;  220 89-95
  • 29 Tokuda H, Kozawa O, Miwa M, Uematsu T. p38 mitogen-activated protein (MAP) kinase but not p44/p42 MAP kinase is involved in prostaglandin E1-induced vascular endothelial growth factor synthesis in osteoblasts.  J Endocrinol.. 2001;  170 629-638
  • 30 Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells.  J Biol Chem.. 2002;  277 36 024-36 031
  • 31 Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Dohi S, Uematsu T. Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells.  J Cell Biochem.. 2001;  82 591-598
  • 32 Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans.  Blood. 2001;  97 785-791
  • 33 Henriksen K, Karsdal M A, Delaissé J M, Engsig M T. RANKL and VEGF induce osteoclast chemotaxis through an ERK1/2 dependent mechanism.  J Biol Chem. 2003;  278 48 745-48 753
  • 34 Strammiello R, Benini S, Manara M C, Perdichizzi S, Serra M, Spisni E, Picci P, Scotlandi K. Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing’s sarcoma cells.  Horm Metab Res.. 2003;  35 675-684

Dr. Osamu Kozawa

Department of Pharmacology · Gifu University Graduate School of Medicine ·

Gifu 501-1194 · Japan

Telefon: + 81 (58) 230-6214 ·

Fax: + 81 (58) 230-6218 ·

eMail: okozawa@cc.gifu-u.ac.jp