Rofo 2005; 177(6): 805-811
DOI: 10.1055/s-2005-858190
Thorax

© Georg Thieme Verlag KG Stuttgart · New York

Computertomographische Kriterien für den zu erwartenden Effekt von inhaliertem Stickstoffmonoxid bei Patienten mit schwerem akutem Lungenversagen[1]

Computed Tomographic Criteria as Expected Effect to Inhaled Nitric Oxide in Patients with Severe Acute Respiratory Distress SyndromeR. Röttgen1 , T. Busch2 , H. Lohbrunner2 , H. Einfeld1 , M. Deja2 , R. J. Schroeder1 , S. Weber-Carstens2 , K. J. Falke2 , R. Felix1 , U. Kaisers2
  • 1Klinik für Strahlenheilkunde, Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin
  • 2Klinik für Anästhesiologie und Operative Intensivmedizin, Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin
Further Information

Publication History





Publication Date:
19 May 2005 (online)

Zusammenfassung

Ziel: Bei der Therapie einer Hypoxämie beim schweren akuten Lungenversagen (ARDS) mit inhalativem Stickstoffmonoxid (iNO) reagiert aus bisher ungeklärten Gründen ein Teil der ARDS-Patienten nicht mit einer klinisch relevanten Verbesserung der Oxygenierung (Nonresponder). Wir untersuchten, ob die Effekte von iNO mit radiologischen Kriterien des Lungenschadens korrelieren. Material und Methoden: Bei n = 25 ARDS-Patienten, die innerhalb von 72 Stunden vor Beginn einer iNO-Therapie ein Thorax-CT erhalten hatten, wurden retrospektiv der prozentuale Anteil des geschädigten Lungengewebes und die Grenze zwischen geschädigtem und nicht betroffenem Lungengewebe ausgemessen und letztere wiederum in Relation zum Umfang der Pleura viszeralis gesetzt. Die resultierende relative Grenzlinienlänge wurde mit der durch iNO induzierten Verbesserung der arteriellen Oxygenierung (ΔPaO2) in Beziehung gesetzt. Ergebnisse: Bei n = 6 Nonrespondern auf iNO (ΔPaO2< 10 %) fanden wir eine signifikant verringerte Grenzlinie zwischen nicht betroffenem und geschädigtem Lungengewebe als Maß für das Vorliegen größerer kohärent pathologisch veränderter Lungenareale im Vergleich zu n = 19 Respondern auf iNO (ΔPaO2 > 10 %) (0,09 ± 0,02 vs. 0,21 ± 0,01; p < 0,05). Es fand sich eine moderate und signifikante Korrelation zwischen dem durch iNO induzierten ΔPaO2 und der relativen Grenzlinienlänge bei allen untersuchten ARDS-Patienten (R = 0,59; p < 0,01). Schlussfolgerung: Unsere Ergebnisse zeigen, dass bei Patienten mit ARDS die im CT darstellbare Verteilung von geschädigtem Lungenparenchym signifikant mit der Response auf iNO korreliert.

Abstract

Purpose: Inhaled nitric oxide (iNO) is an effective therapy for severe hypoxemia in most patients with acute respiratory distress syndrome (ARDS). For unknown reason, a subset of ARDS patients does not respond favorably to iNO therapy. We hypothesized that radiological manifestation of lung injury may be related to iNO response. Materials and Methods: We retrospectively analyzed data from n = 25 ARDS patients who received iNO, and underwent chest CT within 72 h prior to inhaled treatment. The morphology of coherently pathologic lung tissue was characterized by the length of the borderline between consolidated, infiltrated and atelectatic lung tissue and radiologically normal lung tissue. This quantity was expressed as relative fraction of the visceral pleural circumference and averaged over all CT slices. Furthermore we semiquantitatively determined the total volume of consolidated lung tissue as part of the whole lung. Results: In n = 6 non-responders to iNO (ΔPaO2 < 10 %), we determined a short relative borderline between normal and consolidated lung tissue due to the presence of large and coherently consolidated lung regions. In n = 19 iNO responders (ΔPaO2 > 10 %), we found significantly less coherently consolidated lung tissue evidenced by an increased relative borderline when compared to iNO non-responders (0.09 ± 0.02 vs. 0.1 ± 0.01; P < 0.05). Moreover, there was a moderate and significant correlation between ΔPaO2 induced by iNO and the relative borderline in all patients studied (R = 0.59; P < 0.05). Total fraction of consolidated lung tissue volume was not different between iNO non-responders and responders (60 ± 3 % vs. 54 ± 2 % n. s.). Conclusion: Our data demonstrate that the gross morphological distribution of pathological lung tissue influences iNO response in ARDS. Inhaled NO was most beneficial in injured lungs characterized by many small consolidated areas surrounded by normal lung tissue. The increased borderline between pathologic and normal lung tissue offers additional possibility for iNO to divert blood flow from shunt areas to ventilated lung regions, which consequently improves arterial oxygenation.

1 R. R. und T. B. trugen in gleichem Umfang zu dieser Studie bei.

Literatur

  • 1 Ware L B, Matthay M A. The acute respiratory distress syndrome.  N Engl J Med. 2000;  342 1334-1349
  • 2 Frostell C, Fratacci M D, Wain J C. et al . Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction.  Circulation. 1991;  83 2038-2047
  • 3 Rossaint R, Falke K J, Lopez F. et al . Inhaled nitric oxide for the adult respiratory distress syndrome.  N Engl J Med. 1993;  328 399-405
  • 4 Kaisers U, Busch T, Deja M. et al . Selective pulmonary vasodilation in acute respiratory distress syndrome.  Crit Care Med. 2003;  31 S337-S342
  • 5 Rossaint R, Gerlach H, Schmidt-Ruhnke H. et al . Efficacy of inhaled nitric oxide in patients with severe ARDS.  Chest. 1995;  107 1107-1115
  • 6 Lundin S, Nathorst-Westfelt U, Stenquist O. et al . Response to nitric oxide inhalation in early acute lung injury.  Intensive Care Med. 1996;  22 728-734
  • 7 Manktelkow C, Bigatello L M, Hess D. et al . Physiologic determinants of the response to inhaled nitric oxide in patients with acute respiratory distress syndrome.  Anesthesiology. 1997;  87 297-307
  • 8 Mira J P, Monchi M, Brunet F. et al . Lack of efficacy of inhaled nitric oxide in ARDS.  Intensive Care Med. 1994;  20 532
  • 9 Martinez M, Diaz E, Joseph D. et al . Improvement in oxygenation by prone position and nitric oxide in patients with acute respiratory distress syndrome.  Intensive Care Med. 1999;  25 29-36
  • 10 Puybasset L, Rouby J J, Mourgeon E. et al . Factors influencing cardiopulmonary effects of inhaled nitric oxide in acute respiratory failure.  Am J Respir Crit Care Med. 1995;  152 318-328
  • 11 Kühl H, Beiderlinden M, Debatin J F. et al . Initiales Thorax-CT bei ARDS-Patienten. Korrelation der CT-Befunde mit Beatmungsparametern und Patientenüberleben.  Fortschr Röntgenstr. 2004;  176 S158
  • 12 Gattinoni L, Bombino M, Pelosi P. et al . Lung structure and function in different stages of severe adult respiratory distress syndrome.  JAMA. 1994;  271 1772-1779
  • 13 Schreiter D, Reske A, Stichert B. et al . Alveolar recruitment in combination with sufficient positive end-expiratory pressure oxygenation and lung aeration in patients with severe chest trauma.  Crit Care Med. 2004;  32 968-975
  • 14 Markstaller K, Arnold M, Döbrich M. et al . Software zur automatischen Quantifizierung von Belüftungszuständen bei akutem Lungenversagen in dynamischen CT-Aufnahmen der Lunge.  Fortschr Röntgenstr. 2001;  173 830-835
  • 15 Bernard G R, Artigas A, Brigham K L. et al . The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination.  Am J Respir Crit Care Med. 1994;  149 818-824
  • 16 Knaus W A, Draper E A, Wagner D P. et al . APACHE II: a severity of disease classification system.  Crit Care Med. 1985;  13 819-829
  • 17 Murray J F, Matthay M A, Luce J M. et al . An expanded definition of the adult respiratory distress syndrome.  Am Rev Respir Dis. 1988;  138 720-723
  • 18 Niemer M, Nemes C. (eds) .Datenbuch Intensivmedizin. Stuttgart; Gustav Fischer Verlag 1979
  • 19 Malbuisson L M, Muller J C, Constantin J M. et al . Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2001;  163 1444-1450
  • 20 Rouby J J, Puybasset L, Nieszkowska A. et al . Acute respiratory distress syndrome: lessons from computed tomography of the whole lung.  Crit Care Med. 2003;  31 S285-S295
  • 21 Bletz C, Markstaller K, Karmrodt J. et al . Quantifizierung von Atelektasen bei kontrollierter Beatmung. Spiral-CT versus dynamische Einzelschicht.  Fortschr Röntgenstr. 2004;  176 409-416
  • 22 Brett S J, Hansell D M, Evans T W. Clinical correlates in acute lung injury: response to inhaled nitric oxide.  Chest. 1998;  114 1397-1404
  • 23 Bink A, Markstaller K, Birkenkamp K. et al . Multirotations-CT und ARDS.  Radiologe. 2001;  41 195-200
  • 24 Gattinoni L, Caironi P, Pelosi P. et al . What has computed tomography taught us about the acute respiratory distress syndrome?.  Am J Respir Crit Care Med. 2001;  164 1701-1711
  • 25 Biederer J, Schnabel A, Muhle C. et al . Correlation between HRCT findings, pulmonary function tests and bronchoalveolar lavage cytology in interstitial lung disease associated with rheumatoid arthritis.  Eur Radiol. 2004;  14 272-280
  • 26 Hsu H H, Tsao C, Wu C P. et al . Correlation of high-resolution CT, symptoms, and pulmonary function in patients during recovery from severe acute respiratory syndrome.  Chest. 2004;  126 149-158
  • 27 Bigatello L M, Hurford W E, Kacmarek R M. et al . Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome: effects on pulmonary hemodynamics and oxygenation.  Anesthesiology. 1994;  80 761-770
  • 28 Young J D, Brampton W J, Knighton J D. et al . Inhaled nitric oxide in acute respiratory failure in adults.  Br J Anaesth. 1994;  73 499-502

1 R. R. und T. B. trugen in gleichem Umfang zu dieser Studie bei.

Dr. Rainer Roettgen

Klinik für Strahlenheilkunde, Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin

Augustenburger Platz 1

D-13353 Berlin

Phone: ++ 49/30/4 50-55 70 02

Fax: ++ 49/30/4 50-55 79 00

Email: r.roettgen@t-online.de