TumorDiagnostik & Therapie 2005; 26(3): 105-112
DOI: 10.1055/s-2005-858178
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Ein neuer Akt in der Tumortherapie? Inhibition des PI3K/Akt-Kinasewegs als neue Therapieoption bei Tumorerkrankungen

A New Act in Tumor Therapy? Targeting the PI3K/Akt Kinase Pathway as Novel Therapy Option for Treatment of Neoplastic DiseaseB. Opalka1 , P. Schütt1
  • 1Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
22 June 2005 (online)

Zusammenfassung

Die Proteinkinase Akt/PKB (Proteinkinase B) nimmt in ihrer aktivierten Form als Bestandteil des PI3K/Akt-Signaltransduktionswegs, der durch Stimulation zahlreicher Wachstumsfaktorrezeptoren stimuliert wird, eine zentrale Rolle als antiapoptotischer, proliferationsfördernder Signalvermittler ein. Die durch Phosphorylierung aktivierte Akt-Kinase phosphoryliert ihrerseits eine Vielzahl von Zielmolekülen, die so unterschiedliche Funktionen wie Überleben und Proliferation, Stoffwechselprozesse, Zellgröße, Angiogenese und Resistenz gegenüber Sauerstoffmangel regeln. In Tumoren ist der PI3K/Akt-Weg häufig dereguliert und eine aberrante Aktivierung von Akt resultiert in der Blockade von Apoptose, Förderung der Proliferation, Neoangiogenese, einem in der Regel fortgeschrittenen und aggressiven Phänotyp sowie Resistenz gegenüber zytotoxischer Behandlung. Der PI3K/Akt-Weg ist folglich eine wichtige Zielstruktur für therapeutische Interventionen. Neben bekannten inhibitorischen Substanzen, die experimentell eingesetzt werden, aber den Weg in die Klinik bislang nicht gefunden haben, wird zurzeit eine Vielzahl von Verbindungen getestet, die entweder oberhalb von Akt/PKB ansetzen, Akt/PKB direkt inhibieren oder in nachgeschaltete Prozesse eingreifen. Die vielfältigen Funktionen von Akt/PKB machen es dabei erforderlich, Substanzen und/oder Dosen zu finden, die möglichst tumorselektiv wirksam und nebenwirkungsfrei sind. Der vorliegende Übersichtsartikel zeigt eine Reihe neuerer Entwicklungen auf diesem Gebiet auf.

Abstract

The protein kinase Akt (also known as protein kinase B, PKB) as part of the PI3K/Akt signal transduction pathway stimulated by a number of growth factor receptors in its activated form plays a crucial role as an antiapoptotic and proliferation-inducing molecule. Phospho-Akt as activated form phosphorylates a plethora of target molecules involved in regulation of survival and proliferation, cell metabolism and cell size regulation, angiogenesis, and resistance to hypoxia. Deregulation of the PI3K/Akt signal cascade is a hallmark of many human tumors and indicative of late stage, an aggressive phenotype as well as resistance to cytotoxic treatment. Thus, the PI3K/Akt pathway is an obvious target for therapeutic intervention. Apart from substances widely used in experimental settings that have not found their way to the clinics yet a multitude of new candidate inhibitors acting either upstream of Akt, inhibiting Akt itself or being effective downstream of Akt are evaluated. The multifarious activities of Akt also in normal cells require special qualities of the substances themselves or their dosages to procure the highest tumor selectivity possible. This review briefly summarizes actual developments in this exciting field.

Literatur

  • 1 Rastinejad F, Conboy M J, Rando T A. et al . Tumor suppression by RNA from the 3’ untranslated region of alpha-tropomyosin.  Cell. 1993;  75 1107-1117
  • 2 Vivanco I, Sawyers C L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer.  Nat Rev Cancer. 2002;  2 489-501
  • 3 Franke T F, Hornik C P, Segev L. et al . PI3K/Akt and apoptosis: size matters.  Oncogene. 2003;  22 8983-8998
  • 4 Mills G B, Kohn E, Lu Y. et al . Linking molecular diagnostics to molecular therapeutics: targeting the PI3K pathway in breast cancer.  Semin Oncol. 2003;  30 (Suppl. 16) 93-104
  • 5 Mitsiades C S, Mitsiades N, Koutsilieris M. The Akt pathway: molecular targets for anti-cancer drug development.  Curr Cancer Drug Targets. 2004;  4 235-256
  • 6 Staal S P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.  Proc Natl Acad Sci U S A. 1987;  84 5034-5037
  • 7 Coffer P J, Woodgett J R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families.  Eur J Biochem. 1992;  205 1217
  • 8 Jones P F, Jakubowicz T, Pitossi F J. et al . Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily.  Proc Natl Acad Sci U S A. 1991;  88 4171-4175
  • 9 Testa J R, Bellacosa A. Membrane translocation and activation of the Akt kinase in growth factor-stimulated hematopoietic cells.  Leuk Res. 1997;  21 1027-1031
  • 10 Remy I, Michnick S W. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt.  Mol Cell Biol. 2004;  24 1493-1504
  • 11 Steelman L S, Pohnert S C, Shelton J G. et al . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.  Leukemia. 2004;  18 189-218
  • 12 Maehama T, Dixon J E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.  J Biol Chem. 1998;  273 13 375-13 378
  • 13 Liu Q, Sasaki T, Kozieradzki I. et al . SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival.  Genes Dev. 1999;  13 786-791
  • 14 Taylor V, Wong M, Brandts C. et al . 5’ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells.  Mol Cell Biol. 2000;  20 6860-6871
  • 15 Stambolic V, Suzuki A, de la Pompa J L. et al . Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN.  Cell. 1998;  95 29-39
  • 16 Shao R, Karunagaran D, Zhou B P. et al . Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis.  J Biol Chem. 1997;  272 32 739-32 742
  • 17 Romashkova J A, Makarov S S. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling.  Nature. 1999;  401 86-90
  • 18 Meng F, D’Mello S R. NF-kappaB stimulates Akt phosphorylation and gene expression by distinct signaling mechanisms.  Biochim Biophys Acta. 2003;  1630 35-40
  • 19 Meng F, Liu L, Chin P C. et al . Akt is a downstream target of NF-kappa B.  J Biol Chem. 2002;  277 29 674-29 680
  • 20 Zhou B P, Liao Y, Xia W. et al . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation.  Nat Cell Biol. 2001;  3 973-982
  • 21 Potter C J, Pedraza L G, Huang H. et al . The tuberous sclerosis complex (TSC) pathway and mechanism of size control.  Biochem Soc Trans. 2003;  31 584-586
  • 22 Remy I, Montmarquette A, Michnick S W. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.  Nat Cell Biol. 2004;  6 358-365
  • 23 Conery A R, Cao Y, Thompson E A. et al . Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.  Nat Cell Biol. 2004;  6 366-372
  • 24 Miyauchi H, Minamino T, Tateno K. et al . Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway.  EMBO J. 2004;  23 212-220
  • 25 Song J, Salek-Ardakani S, Rogers P R. et al . The costimulation-regulated duration of PKB activation controls T cell longevity.  Nat Immunol. 2004;  5 150-158
  • 26 Emamian E S, Hall D, Birnbaum M J. et al . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia.  Nat Genet. 2004;  36 131-137
  • 27 Ikeda M, Iwata N, Suzuki T. et al . Association of AKT1 with schizophrenia confirmed in a Japanese population.  Biol Psychiatry. 2004;  56 698-700
  • 28 Wanzel M, Kleine-Kohlbrecher D, Herold S. et al . Akt and 14 - 3- 3eta regulate Miz1 to control cell-cycle arrest after DNA damage.  Nat Cell Biol. 2005;  7 30-41
  • 29 Cheng J Q, Ruggeri B, Klein W M. et al . Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA.  Proc Natl Acad Sci U S A. 1996;  93 3636-3641
  • 30 Liao Y, Hung M C. Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis.  Mol Cell Biol. 2003;  23 6836-6848
  • 31 Schlieman M G, Fahy B N, Ramsamooj R. et al . Incidence, mechanism and prognostic value of activated AKT in pancreas cancer.  Br J Cancer. 2003;  89 2110-2115
  • 32 Lee H Y, Srinivas H, Xia D. et al . Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent pathways cooperate to maintain lung cancer cell survival.  J Biol Chem. 2003;  278 23 630-23 638
  • 33 Janmaat M L, Kruyt F A, Rodriguez J A. et al . Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways.  Clin Cancer Res. 2003;  9 2316-2326
  • 34 Mayo M W, Denlinger C E, Broad R M. et al . Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway.  J Biol Chem. 2003;  278 18 980-18 989
  • 35 Maulik G, Madhiwala P, Brooks S. et al . Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer.  J Cell Mol Med. 2002;  6 539-553
  • 36 Kraus A C, Ferber I, Bachmann S O. et al . In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways.  Oncogene. 2002;  21 8683-8695
  • 37 Krystal G W, Sulanke G, Litz J. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy.  Mol Cancer Ther. 2002;  1 913-922
  • 38 Faridi J, Wang L, Endemann G. et al . Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo.  Clin Cancer Res. 2003;  9 2933-2939
  • 39 West K A, Brognard J, Clark A S. et al . Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells.  J Clin Invest. 2003;  111 81-90
  • 40 West K A, Linnoila I R, Belinsky S A. et al . Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3’-kinase/Akt pathway in vitro and in vivo.  Cancer Res. 2004;  64 446-451
  • 41 Perez-Tenorio G, Stal O. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients.  Br J Cancer. 2002;  86 540-545
  • 42 Skorski T, Bellacosa A, Nieborowska-Skorska M. et al . Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway.  EMBO J. 1997;  16 6151-6161
  • 43 Tomlinson C C, Damania B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway.  J Virol. 2004;  78 1918-1927
  • 44 Walenta S, Wetterling M, Lehrke M. et al . High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers.  Cancer Res. 2000;  60 916-921
  • 45 Salas T R, Kim J, Vakar-Lopez F. et al . Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity.  J Biol Chem. 2004;  279 19 191-19 200
  • 46 Rieger-Christ K M, Lee P, Zagha R. et al . Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway.  Oncogene. 2004;  23 4745-4753
  • 47 Yakes F M, Chinratanalab W, Ritter C A. et al . Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action.  Cancer Res. 2002;  62 4132-4141
  • 48 Liang K, Lu Y, Jin W. et al . Sensitization of breast cancer cells to radiation by trastuzumab.  Mol Cancer Ther. 2003;  2 1113-1120
  • 49 Salatino M, Schillaci R, Proietti C J. et al . Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves inactivation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone receptor activity.  Oncogene. 2004;  23 5161-5174
  • 50 Hu L, Hofmann J, Lu Y. et al . Inhibition of phosphatidylinositol 3’-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.  Cancer Res. 2002;  62 1087-1092
  • 51 Bedogni B, O’Neill M S, Welford S M. et al . Topical treatment with inhibitors of the phosphatidylinositol 3’-kinase/Akt and Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways reduces melanoma development in severe combined immunodeficient mice.  Cancer Res. 2004;  64 2552-2560
  • 52 Druker B J, Talpaz M, Resta D J. et al . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.  N Engl J Med. 2001;  344 1031-1037
  • 53 Demetri G D, von Mehren M, Blanke C D. et al . Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors.  N Engl J Med. 2002;  347 472-480
  • 54 Ottmann O G, Druker B J, Sawyers C L. et al . A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.  Blood. 2002;  100 1965-1971
  • 55 Ohashi A, Kinoshita K, Isozaki K. et al . Different inhibitory effect of imatinib on phosphorylation of mitogen-activated protein kinase and Akt and on proliferation in cells expressing different types of mutant platelet-derived growth factor receptor-alpha.  Int J Cancer. 2004;  111 317-321
  • 56 Yang L, Dan H C, Sun M. et al . Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt.  Cancer Res. 2004;  64 4394-4399
  • 57 Mitsiades C S, Mitsiades N, Poulaki V. et al . Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications.  Oncogene. 2002;  21 5673-5683
  • 58 Luo Y, Smith R A, Guan R. et al . Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition.  Biochemistry. 2004;  43 1254-1263
  • 59 Castillo S S, Brognard J, Petukhov P A. et al . Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues.  Cancer Res. 2004;  64 2782-2792
  • 60 Piccolo E, Vignati S, Maffucci T. et al . Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway.  Oncogene. 2004;  23 1754-1765
  • 61 Bull E E, Dote H, Brady K J. et al . Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)- 17-demethoxygeldanamycin.  Clin Cancer Res. 2004;  10 8077-8084
  • 62 Shigeoka Y, Igishi T, Matsumoto S. et al . Sulindac sulfide and caffeic acid phenethyl ester suppress the motility of lung adenocarcinoma cells promoted by transforming growth factor-beta through Akt inhibition.  J Cancer Res Clin Oncol. 2004;  130 146-152
  • 63 Neshat M S, Mellinghoff I K, Tran C. et al . Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.  Proc Natl Acad Sci U S A. 2001;  98 10 314-10 319
  • 64 Wendel H G, De Stanchina E, Fridman J S. et al . Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy.  Nature. 2004;  428 332-337
  • 65 Chan S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer.  Br J Cancer. 2004;  91 1420-1424
  • 66 Hidalgo M, Rowinsky E K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy.  Oncogene. 2000;  19 6680-6686
  • 67 Majumder P K, Febbo P G, Bikoff R. et al . mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.  Nat Med. 2004;  10 594-601
  • 68 de Graffenried L A, Friedrichs W E, Russell D H. et al . Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity.  Clin Cancer Res. 2004;  10 8059-8067
  • 69 Chen Y L, Law P Y, Loh H H. Inhibition of Akt/protein kinase B signaling by naltrindole in small cell lung cancer cells.  Cancer Res. 2004;  64 8723-8730
  • 70 Lindsley C W, Zhao Z, Leister W H. et al . Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors.  Bioorg Med Chem Lett. 2005;  15 761-764
  • 71 Ramos A M, Fernandez C, Amran D. et al . Pharmacological inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells.  Blood. 2005;  105 4013-4020
  • 72 Rahman K W, Sarkar F H. Inhibition of nuclear translocation of nuclear factor-{kappa}B contributes to 3,3’-diindolylmethane-induced apoptosis in breast cancer cells.  Cancer Res. 2005;  65 364-371
  • 73 Rahman K M, Li Y, Sarkar F H. Inactivation of akt and NF-kappaB play important roles during indole-3-carbinol-induced apoptosis in breast cancer cells.  Nutr Cancer. 2004;  48 84-94

Prof. Dr. rer. nat. Bertram Opalka, Dr. med. Philipp Schütt

Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinikum Essen der Universität Duisburg-Essen

Hufelandstr. 55

45122 Essen

Phone: ++ 49/201/723 - 2020

Fax: ++ 49/201/723 - 2020

Email: bertram.opalka@uni-essen.de

    >