Int J Sports Med 2005; 26(10): 815-821
DOI: 10.1055/s-2005-837449
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Endurance Training: Volume-Dependent Adaptational Changes in Myosin

T. Seene1 , K. Alev1 , P. Kaasik1 , A. Pehme1 , A.-M. Parring2
  • 1Department of Functional Morphology, University of Tartu, Estonia
  • 2Department of Mathematical Statistics, University of Tartu, Estonia
Further Information

Publication History

Accepted after revision: September 30, 2004

Publication Date:
15 March 2005 (online)

Abstract

The purpose of this study was to find the effect of different endurance training volumes on the composition and turnover of myosin. Sixteen-week-old male rats of the Wistar strain were divided into three different volume-based training groups. Changes in myosin heavy chain (MyHC), myosin light chain (MyLC) isoforms' composition, their synthesis rate, as well as myosin binding C-protein synthesis rate, and muscle protein degradation rate were measured. In slow-twitch (ST) soleus (Sol) muscle MyHC I isoform relative content increased and MyHC IIa isoform decreased during excessive increase in the volume of endurance training (ET). In plantaris (Pla) muscle excessive increase in ET volume decreased MyHC I and IIb isoforms, and increased MyHC IIa and IId relative content. In extensor digitorum longus (EDL) muscle the relative content of MyHC IId isoform increased during ET, but excessive increase in training volume decreased it. In Pla muscle the relative content of MyLC 1slow isoform decreased during ET, but excessive increase in ET volume decreased the relative content of MyLC 3fast isoform in both fast-twitch (FT) muscles. Decrease in MyHC and myosin binding C-protein synthesis rate in Pla muscle had significant correlation with ET volume (r = - 0.537, p < 0.05 and r = - 0.727, p < 0.001 subsequently). MyHC I and IIb isoforms and MyLC 3fast isoform in Pla muscle and MyHC IIb, IId and MyLC 3fast isoforms in EDL muscle are the most sensitive to the increase in ET volume. Excessive increase in ET volume leads to a decrease in physical working capacity. The degradation of muscle protein increased during ET in all groups.

References

  • 1 Baldwin K M, Haddad F. Skeletal muscle plasticity: Cellular and molecular responses to altered physical activity paradigms.  Am J Phys Med Rehabil. 2002;  81 40-51
  • 2 Bigard A, Sanchez H, Biort O, Serrurier B. Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions.  J Appl Physiol. 2000;  88 479-486
  • 3 Booth F, Tseng B, Flück M, Carson J. Molecular and cellular adaptation of muscle in response to physical training.  Acta Physiol Scand. 1998;  162 343-350
  • 4 Bottinelli R. Functional heterogenity of mammalian single muscle fibres: do myosin isoforms tell the whole story?.  Eur J Physiol. 2001;  443 6-17
  • 5 Bradford A. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principe of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 6 Coskar H, Wouter E, Van Der Vusse C, Schols A. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy prospectives.  Am J Clin Nutr. 2000;  71 1033-1047
  • 7 Guezenne C, Gilson E, Serrurier B. Comparative effects of hindlimb suspension and exercise on skeletal muscle myosin isozymes in rat.  Eur J Appl Physiol. 1990;  60 430-435
  • 8 Hayashibara T, Miyanishi T. Binding of the amino terminal region of myosin alkali 1 light chain to actin and to effect on actin-myosin interaction.  Biochemistry. 1994;  33 12821-12827
  • 9 Hofmann P, Greaser M, Moss R. C-protein limits shortering velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation.  J Physiol. 1991;  439 701-715
  • 10 Holloszy J, Booth F. Biochemical adaptation to endurance exercise in muscle.  Ann Rev Physiol. 1976;  38 273-291
  • 11 Hämäläinen N, Pette D. Slow-to-fast transitions in myosin expression of rat soleus muscle by phasic high-frequency stimulation.  FEBS Lett. 1996;  399 220-222
  • 12 Kaasik P, Alev K, Seene T. The effect of activity on the rat skeletal muscle contractile apparatus.  Scand J Lab Anim SCI. 1996;  23 35-39
  • 13 Karas R, Williams R. Molecular mechanism of skeletal muscle adaptations to exercise.  Trends Cardiovasc Med. 1991;  1 341-346
  • 14 Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 15 Noakes T. Physiological models to understand exercise fatique and the adaptations that predict or enhance athletic performance.  Scand J Med Sci Sports. 2000;  10 123-140
  • 16 Oakley B, Kirsch D, Morris N. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels.  Anal Biochem. 1980;  105 361-363
  • 17 Pette D. Training effects on the contractile apparatus.  Acta Physiol Scand. 1998;  162 367-376
  • 18 Porzio M A, Pearson A M. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  Biochim Biophys Acta. 1977;  490 27-34
  • 19 Schreurs V, Boekholt H, Koopmanschap R. Gel filtration in sodium dodecylsulphate of hydrophobic muscle proteins on sephacryl S-400 superfine.  J Chromatogr. 1983;  254 203-210
  • 20 Seene T, Alev K. Effect of glucocorticoids on the turnover rate of actin and myosin heavy and light chains on different types of skeletal muscle fibers.  J Steroid Biochem. 1985;  22 767-771
  • 21 Seene T, Alev K. Effect of muscular activity on the turnover rate of actin and myosin heavy and light chains in different types of skeletal muscle.  Int J Sports Med. 1991;  12 204-207
  • 22 Seene T, Kaasik P, Pehme A, Alev K, Riso E-M. The effect of glucocorticoids on the myosin heavy chain isoforms' turnover in skeletal muscle.  J Steroid Biochem Mol Biol. 2003;  86 201-206
  • 23 Seene T, Umnova M. Relations between the changes in the turnover rate of contractile proteins, activation of satellite cells and ultra-structural response of neuromuscular junctions in the fast-oxidative-glycolytic muscle fibers in endurance trained rats.  Basic Appl Myol. 1992;  2 34-46
  • 24 Seene T, Umnova M, Kaasik P. The exercise myopathy. Lehmann M et al Overload, Performance Incompetence, and Regeneration in Sport. New York; Kluwer Academic Plenum Publishers 1999: 119-130
  • 25 Thayer R, Collins E, Noble G, Taylor A. A decrease of aerobic endurance training: Histological evidence for fibre type transformation.  J Sports Med Phys Fitn. 2000;  40 284-289
  • 26 Vescovo G, Zennaro R, Sandri M. Apoptosis of skeletal muscle myofibers and interstitial cells in experimental heart failure.  J Med Cell Cardiol. 1998;  30 2449-2459
  • 27 Wahrmann J, Winand R, Rieu M. Plasticity of skeletal myosin in endurance-trained rats (I): A quantitative study.  Eur J Appl Physiol. 2001;  84 367-372

T. Seene

Department of Functional Morphology, Institute of Exercise Biology, University of Tartu

Ülikooli Str. 18

50090 Tartu

Estonia

Phone: + 3727375364

Fax: + 37 27 37 53 62

Email: teet.seene@ut.ee