Semin Thromb Hemost 2004; 30(4): 441-450
DOI: 10.1055/s-2004-833479
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Platelet Secretory Mechanisms

Guy L. Reed1
  • 1Associate Professor, Harvard University, School of Public Health and Associate Physician, Massachusetts General Hospital Boston, Massachusetts
Further Information

Publication History

Publication Date:
08 September 2004 (online)

Platelet granule secretion or exocytosis is required for normal platelet function and plays an important role in the pathogenesis of cardiovascular diseases. Platelets secrete molecules that amplify thrombosis, induce vascular remodeling, recruit and activate cells. The platelet secretory process begins in megakaryocytes where molecules are targeted to developing granules through specific vesicle trafficking and transporter mechanisms. Secretory granules may continue to mature in the circulation after the platelet has been released from the megakaryocyte. The platelet secretory process culminates when ligands interact with specific platelet receptors to trigger exocytosis. A convergence of new insights from several different organisms has begun to illuminate the molecular mechanisms responsible for the platelet secretory process, from granule development through membrane fusion and exocytosis.

REFERENCES

  • 1 Dale G L, Friese P, Batar P et al.. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface.  Nature. 2002;  415 175-179
  • 2 Reed G L. Platelet secretion. In: Michelson AD Platelets. San Diego; Elsevier Science 2002: 181-196
  • 3 Reed G L, Fitzgerald M L, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes.  Blood. 2000;  96 3334-3342
  • 4 Flaumenhaft R. Molecular Basis of Platelet Granule Secretion.  Arterioscler Thromb Vasc Biol. 2003;  23 1152-1160
  • 5 Fukami M H, Holmsen H, Kowalska M A, Niewiarowski S. Platelet secretion. In: Colman RW, Hirsch J, Marder VJ, Clowes AW, George JN Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 4th. ed. Philadelphia; Lippincott Williams & Wilkins 2001: 516-573
  • 6 Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions.  Platelets. 2001;  12 261-273
  • 7 Stenberg P E, McEver R P, Shuman M A, Jacques Y V, Bainton D F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation.  J Cell Biol. 1985;  101 880-886
  • 8 Berman C L, Yeo E L, Wencel-Drake J D, Furie B C, Ginsberg M H, Furie B. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein.  J Clin Invest. 1986;  78 130-137
  • 9 Suzuki H, Kaneko T, Sakamoto T et al.. Redistribution of alpha-granule membrane glycoprotein IIb/IIIa (integrin alpha IIb beta 3) to the surface membrane of human platelets during the release reaction.  J Electron Microsc (Tokyo). 1994;  43 282-289
  • 10 Weiss H J, Witte L D, Kaplan K L et al.. Heterogeneity in storage pool deficiency: studies on granule-bound substances in 18 patients including variants deficient in alpha-granules, platelet factor 4, beta-thromboglobulin, and platelet-derived growth factor.  Blood. 1979;  54 1296-1319
  • 11 Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow.  Blood. 1959;  14 162
  • 12 Novak E K, Hui S W, Swank R T. Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci.  Blood. 1984;  63 536-544
  • 13 Packham M A, Mustard J F. The role of platelets in the development and complications of atherosclerosis.  Semin Hematol. 1986;  23 8-26
  • 14 Ross R, Glomset J, Harker L. Response to injury and atherogenesis.  Am J Pathol. 1977;  86 675-684
  • 15 Huo Y, Schober A, Forlow S B et al.. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.  Nat Med. 2003;  9 61-67
  • 16 Blann A D, Lip G Y, Beevers D G, McCollum C N. Soluble P-selectin in atherosclerosis: a comparison with endothelial cell and platelet markers.  Thromb Haemost. 1997;  77 1077-1080
  • 17 Smith F B, Lowe G D, Fowkes F G et al.. Smoking, haemostatic factors and lipid peroxides in a population case control study of peripheral arterial disease.  Atherosclerosis. 1993;  102 155-162
  • 18 Davi G, Romano M, Mezzetti A et al.. Increased levels of soluble P-selectin in hypercholesterolemic patients.  Circulation. 1998;  97 953-957
  • 19 Rak K, Beck P, Udvardy M, Pfliegler G, Misz M, Boda Z. Plasma levels of beta-thromboglobulin and factor VIII-related antigen in diabetic children and adults.  Thromb Res. 1983;  29 155-162
  • 20 Yamanishi J, Sano H, Saito K, Furuta Y, Fukuzaki H. Plasma concentrations of platelet-specific proteins in different stages of essential hypertension: interactions between platelet aggregation, blood lipids and age.  Thromb Haemost. 1985;  54 539-543
  • 21 Ramsis N, El-Hawary A A, Ismail E. Relation between carotid intima-media thickness, platelet surface activation and endothelial cell markers.  Haemostasis. 1998;  28 268-275
  • 22 Sixma J J, Slot J W, Geuze H J. Immunocytochemical localization of platelet granule proteins.  Methods Enzymol. 1989;  169 301-311
  • 23 Harrison P, Savidge G F, Cramer E M. The origin and physiological relevance of alpha-granule adhesive proteins.  Br J Haematol. 1990;  74 125-130
  • 24 Beckstead J H, Stenberg P E, McEver R P, Shuman M A, Bainton D F. Immunohistochemical localization of membrane and alpha-granule proteins in human megakaryocytes: application to plastic-embedded bone marrow biopsy specimens.  Blood. 1986;  67 285-293
  • 25 Niewiarowski S. Proteins secreted by the platelet.  Thromb Haemost. 1977;  38 924-938
  • 26 Schmaier A H. Platelet forms of plasma proteins: plasma cofactors/substrates and inhibitors contained within platelets.  Semin Hematol. 1985;  22 187-202
  • 27 Handagama P, Rappolee D A, Werb Z, Levin J, Bainton D F. Platelet alpha-granule fibrinogen, albumin, and immunoglobulin G are not synthesized by rat and mouse megakaryocytes.  J Clin Invest. 1990;  86 1364-1368
  • 28 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis.  J Biol Chem. 2000;  275 1521-1524
  • 29 Deuel T F. Protein granule factors. In: von Bruchhausen F, Walter U Platelets and Their Factors. Vol. 126. New York; Springer 1997: 247-296
  • 30 Gear A R, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense.  Microcirculation. 2003;  10 335-350
  • 31 White J G. The dense bodies of human platelets: inherent electron opacity of the serotonin storage particles.  Blood. 1969;  33 598-606
  • 32 Holmsen H, Weiss H J. Secretable storage pools in platelets.  Annu Rev Med. 1979;  30 119-134
  • 33 Nishibori M, Cham B, McNicol A, Shalev A, Jain N, Gerrard J M. The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin.  J Clin Invest. 1993;  91 1775-1782
  • 34 Israels S J, McMillan E M, Robertson C, Singhory S, McNicol A. The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes.  Thromb Haemost. 1996;  75 623-629
  • 35 Febbraio M, Silverstein R L. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein.  J Biol Chem. 1990;  265 18531-18537
  • 36 Israels S J, Gerrard J M, Jacques Y V et al.. Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140).  Blood. 1992;  80 143-152
  • 37 Norcott J P, Solari R, Cutler D F. Targeting of P-selectin to two regulated secretory organelles in PC12 cells.  J Cell Biol. 1996;  134 1229-1240
  • 38 Menard M, Meyers K M, Prieur D J. Demonstration of secondary lysosomes in bovine megakaryocytes and platelets using acid phosphatase cytochemistry with cerium as a trapping agent.  Thromb Haemost. 1990;  63 127-132
  • 39 Fukami M H, Salganicoff L. Human platelet storage organelles. A review.  Thromb Haemost. 1977;  38 963-970
  • 40 Ehrlich H P, Gordon J L. Proteinases in Platelets. Vol. 1. New York; Elsevier 1976
  • 41 Dangelmaier C A, Holmsen H. Determination of acid hydrolases in human platelets.  Anal Biochem. 1980;  104 182-191
  • 42 Sollner T, Whiteheart S W, Brunner M et al.. SNAP receptors implicated in vesicle targeting and fusion.  Nature. 1993;  362 318-324
  • 43 Weber T, Zemelman B V, McNew J A et al.. SNAREpins: minimal machinery for membrane fusion.  Cell. 1998;  92 759-772
  • 44 Hanson P I, Heuser J E, Jahn R. Neurotransmitter release-four years of SNARE complexes.  Curr Opin Neurobiol. 1997;  7 310-315
  • 45 Haas A. NSF-fusion and beyond.  Trends Cell Biol. 1998;  8 471-473
  • 46 Morgan A, Burgoyne R D. A role for soluble NSF attachment proteins (SNAPs) in regulated exocytosis in adrenal chromaffin cells.  EMBO J. 1995;  14 232-239
  • 47 Zerial M, McBride H. Rab proteins as membrane organizers.  Nat Rev Mol Cell Biol. 2001;  2 107-117
  • 48 Seabra M C, Mules E H, Hume A N. Rab GTPases, intracellular traffic and disease.  Trends Mol Med. 2002;  8 23-30
  • 49 Lemons P P, Chen D, Bernstein A M, Bennett M K, Whiteheart S W. Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery.  Blood. 1997;  90 1490-1500
  • 50 Reed G L, Houng A K, Fitzgerald M L. Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion.  Blood. 1999;  93 2617-2626
  • 51 Polgar J, Reed G L. A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion.  Blood. 1999;  94 1313-1318
  • 52 Flaumenhaft R, Croce K, Chen E, Furie B, Furie B C. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4.  J Biol Chem. 1999;  274 2492-2501
  • 53 Bernstein A M, Whiteheart S W. Identification of a cellubrevin/vesicle associated membrane protein 3 homologue in human platelets.  Blood. 1999;  93 571-579
  • 54 Chen D, Bernstein A M, Lemons P P, Whiteheart S W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release.  Blood. 2000;  95 921-929
  • 55 Lemons P P, Chen D, Whiteheart S W. Molecular mechanisms of platelet exocytosis: requirements for alpha-granule release.  Biochem Biophys Res Commun. 2000;  267 875-880
  • 56 Polgar J, Chung S H, Reed G L. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion.  Blood. 2002;  100 1081-1083
  • 57 Feng D, Crane K, Rozenvayn N, Dvorak A M, Flaumenhaft R. Subcellular distribution of 3 functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2.  Blood. 2002;  99 4006-4014
  • 58 Polgar J, Lane W S, Chung S H, Houng A K, Reed G L. Phosphorylation of SNAP-23 in activated human platelets.  J Biol Chem. 2003;  278 44369-44376
  • 59 Rizo J, Sudhof T C. Snares and Munc18 in synaptic vesicle fusion.  Nat Rev Neurosci. 2002;  3 641-653
  • 60 Houng A, Polgar J, Reed G L. Munc18-syntaxin complexes and exocytosis in human platelets.  J Biol Chem. 2003;  278 19627-19633
  • 61 Schraw T D, Lemons P P, Dean W L, Whiteheart S W. A role for Sec1/Munc18 proteins in platelet exocytosis.  Biochem J. 2003;  374 207-217
  • 62 Pfeffer S. Membrane domains in the secretory and endocytic pathways.  Cell. 2003;  112 507-517
  • 63 Novak E K, Reddington M, Zhen L et al.. Inherited thrombocytopenia caused by reduced platelet production in mice with the gunmetal pigment gene mutation.  Blood. 1995;  85 1781-1789
  • 64 Stinchcombe J C, Barral D C, Mules E H et al.. Rab27a is required for regulated secretion in cytotoxic T lymphocytes.  J Cell Biol. 2001;  152 825-834
  • 65 Swank R T, Jiang S Y, Reddington M et al.. Inherited abnormalities in platelet organelles and platelet formation and associated altered expression of low molecular weight guanosine triphosphate-binding proteins in the mouse pigment mutant gunmetal.  Blood. 1993;  81 2626-2635
  • 66 Shirakawa R, Yoshioka A, Horiuchi H, Nishioka H, Tabuchi A, Kita T. Small GTPase rab4 regulates Ca2+-induced alpha-granule secretion in platelets.  J Biol Chem. 2000;  275 33844-33849
  • 67 King S, Reed G. Development of platelet secretory granules.  Semin Cell Dev Biol. 2002;  13 293-302
  • 68 Fitzgerald M L, Reed G L. Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: effects on GTP/GDP binding and cellular distribution.  Biochem J. 1999;  342 353-360
  • 69 Karniguian A, Zahraoui A, Tavitian A. Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins.  Proc Natl Acad Sci USA. 1993;  90 7647-7651
  • 70 Brass L F. Thrombin and platelet activation.  Chest. 2003;  124 18S-25S
  • 71 Ware J A, Chang J D. Protein kinase C and its interactions with other serine-threonine kinases. In: von Bruchhausen F, Walter U Platelets and Their Factors. Vol. 126. New York; Springer 1997: 247-296
  • 72 Rink T J, Smith S W, Tsien R Y. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca- independent activation for shape-change and secretion.  FEBS Lett. 1982;  148 21-26
  • 73 Knight D E, Hallam T J, Scrutton M C. Agonist selectivity and second messenger concentration in Ca2+-mediated secretion.  Nature. 1982;  296 256-257
  • 74 Authi K S, Evenden B J, Crawford N. Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets.  Biochem J. 1986;  233 707-718
  • 75 Watson S P, Ruggiero M, Abrahams S L, Lapetina E G. Inositol 1,4,5-trisphosphate induces aggregation and release of 5-hydroxytryptamine from saponin-permeabilized human platelets.  J Biol Chem. 1986;  261 5368-5372
  • 76 Walker T R, Watson S P. Synergy between Ca2+ and protein kinase C is the major factor in determining the level of secretion from human platelets.  Biochem J. 1993;  289 277-282
  • 77 Chung S H, Polgar J, Reed G L. Protein kinase C phosphorylation of syntaxin 4 in thrombin-activated human platelets.  J Biol Chem. 2000;  275 25286-25291
  • 78 Geanacopoulos M, Turner J, Bowling K E, Vandenberg S R, Gear A R. The role of protein kinase C in the initial events of platelet activation by thrombin assessed with a selective inhibitor.  Thromb Res. 1993;  69 113-124
  • 79 Rozenvayn N, Flaumenhaft R. Protein kinase C mediates translocation of type II phosphatidylinositol 5-phosphate 4-kinase required for platelet alpha-granule secretion.  J Biol Chem. 2003;  278 8126-8134
  • 80 Gerrard J M, McNicol A, Saxena S P. Protein kinase C, membrane fusion and platelet granule secretion.  Biochem Soc Trans. 1993;  21 289-293
  • 81 Arbuzova A, Schmitz A A, Vergeres G. Cross-talk unfolded: MARCKS proteins.  Biochem J. 2002;  362 1-12
  • 82 Flaumenhaft R. Molecular basis of platelet granule secretion.  Arterioscler Thromb Vasc Biol. 2003;  23 1152-1160
  • 83 Wang J, Arbuzova A, Hangyas-Mihalyne G, McLaughlin S. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate.  J Biol Chem. 2001;  276 5012-5019
  • 84 Elzagallaai A, Rose S D, Trifaro J M. Platelet secretion induced by phorbol esters stimulation is mediated through phosphorylation of MARCKS: a MARCKS-derived peptide blocks MARCKS phosphorylation and serotonin release without affecting pleckstrin phosphorylation.  Blood. 2000;  95 894-902
  • 85 White J G. Electron microscopic studies of platelet secretion.  Prog Hemost Thromb. 1974;  2 49-98
  • 86 Morgenstern E, Neumann K, Patscheke H. The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis.  Eur J Cell Biol. 1987;  43 273-282
  • 87 Morimoto T, Ogihara S, Takisawa H. Anchorage of secretion-competent dense granules on the plasma membrane of bovine platelets in the absence of secretory stimulation.  J Cell Biol. 1990;  111 79-86
  • 88 Barkalow K L, Italiano Jr J E, Chou D E, Matsuoka Y, Bennett V, Hartwig J H. Alpha-adducin dissociates from F-actin and spectrin during platelet activation.  J Cell Biol. 2003;  161 557-570
  • 89 Otterdal K, Pedersen T M, Solum N O. Platelet shape change induced by the peptide YFLLRNP.  Thromb Res. 2001;  103 411-420
  • 90 Kometani M, Sato T, Fujii T. Platelet cytoskeletal components involved in shape change and secretion.  Thromb Res. 1986;  41 801-809
  • 91 Sasakawa N, Ohara-Imaizumi M, Okubo S, Hosaka S, Hayashi M, Kumakura K. Roles of actin filaments and the actin-myosin interaction in the regulation of exocytosis in chromaffin cells.  Ann N Y Acad Sci. 2002;  971 273-274
  • 92 Valentijn K, Valentijn J A, Jamieson J D. Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance.  Biochem Biophys Res Commun. 1999;  266 652-661
  • 93 Menche D, Israel A, Karpatkin S. Platelets and microtubules. Effect of colchicine and D2O on platelet aggregation and release induced by calcium ionophore A23187.  J Clin Invest. 1980;  66 284-291
  • 94 Verhoeven A J, Mommersteeg M E, Akkerman J W. Kinetics of energy consumption in human platelets with blocked ATP regeneration.  Int J Biochem. 1986;  18 985-990
  • 95 Berry S, Dawicki D D, Agarwal K C, Steiner M. The role of microtubules in platelet secretory release.  Biochim Biophys Acta. 1989;  1012 46-56
  • 96 Burgoyne R D, Cheek T R. Reorganisation of peripheral actin filaments as a prelude to exocytosis.  Biosci Rep. 1987;  7 281-288
  • 97 Vitale M L, Seward E P, Trifaro J M. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis.  Neuron. 1995;  14 353-363
  • 98 Marcu M G, Zhang L, Nau-Staudt K, Trifaro J M. Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate.  Blood. 1996;  87 20-24
  • 99 Heijnen H F, Debili N, Vainchencker W, Breton-Gorius J, Geuze H J, Sixma J J. Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules.  Blood. 1998;  91 2313-2325
  • 100 Youssefian T, Cramer E M. Megakaryocyte dense granule components are sorted in multivesicular bodies.  Blood. 2000;  95 4004-4007
  • 101 Cramer E M, Norol F, Guichard J et al.. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand.  Blood. 1997;  89 2336-2346
  • 102 Hartwig J, Italiano Jr J. The birth of the platelet.  J Thromb Haemost. 2003;  1 1580-1586
  • 103 Youssefian T, Masse J M, Rendu F, Guichard J, Cramer E M. Platelet and megakaryocyte dense granules contain glycoproteins Ib and IIb-IIIa.  Blood. 1997;  89 4047-4057
  • 104 Cramer E M, Harrison P, Savidge G F et al.. Uncoordinated expression of alpha-granule proteins in human megakaryocytes.  Prog Clin Biol Res. 1990;  356 131-142
  • 105 Hegyi E, Heilbrun L K, Nakeff A. Immunogold probing of platelet factor 4 in different ploidy classes of rat megakaryocytes sorted by flow cytometry.  Exp Hematol. 1990;  18 789-793
  • 106 Handagama P J, George J N, Shuman M A, McEver R P, Bainton D F. Incorporation of a circulating protein into megakaryocyte and platelet granules.  Proc Natl Acad Sci USA. 1987;  84 861-865
  • 107 Handagama P J, Shuman M A, Bainton D F. Incorporation of intravenously injected albumin, immunoglobulin G, and fibrinogen in guinea pig megakaryocyte granules.  J Clin Invest. 1989;  84 73-82
  • 108 Harrison P, Wilbourn B, Debili N et al.. Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets.  J Clin Invest. 1989;  84 1320-1324
  • 109 George J N. Platelet immunoglobulin G: its significance for the evaluation of thrombocytopenia and for understanding the origin of alpha-granule proteins.  Blood. 1990;  76 859-870
  • 110 Handagama P, Bainton D F, Jacques Y, Conn M T, Lazarus R A, Shuman M A. Kistrin, an integrin antagonist, blocks endocytosis of fibrinogen into guinea pig megakaryocyte and platelet alpha-granules.  J Clin Invest. 1993;  91 193-200
  • 111 Morgenstern E. Coated membranes in blood platelets.  Eur J Cell Biol. 1982;  26 315-318
  • 112 Behnke O. Coated pits and vesicles transfer plasma components to platelet granules.  Thromb Haemost. 1989;  62 718-722
  • 113 Behnke O. Degrading and non-degrading pathways in fluid-phase (non-adsorptive) endocytosis in human blood platelets.  J Submicrosc Cytol Pathol. 1992;  24 169-178
  • 114 Klinger M H, Kluter H. Immunocytochemical colocalization of adhesive proteins with clathrin in human blood platelets: further evidence for coated vesicle-mediated transport of von Willebrand factor, fibrinogen and fibronectin.  Cell Tissue Res. 1995;  279 453-457
  • 115 Stenberg P E, Pestina T I, Barrie R J, Jackson C W. The Src family kinases, Fgr, Fyn, Lck, and Lyn, colocalize with coated membranes in platelets.  Blood. 1997;  89 2384-2393
  • 116 Stenberg P E. Ultrastructural organization of maturing megakaryocytes. In: Levine RF, Williams N, Levin J, Evatt BL Progress in Clinical and Biological Research. Vol. 215. New York; Alan R Liss 1986: 373-386
  • 117 Wojenski C M, Schick P K. Development of storage granules during megakaryocyte maturation: accumulation of adenine nucleotides and the capacity for serotonin sequestration.  J Lab Clin Med. 1993;  121 479-485
  • 118 Cramer E M. Platelet and megakaryocytes: anatomy and structural organization. In: Colman RW, Hirsch J, Marder VJ, Clowes AW, George JN Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 4th ed. Philadelphia; Lippincott Williams & Wilkins 2001: 411-428
  • 119 Rao A K, Jalagadugula G, Sun L. Inherited defects in platelet signaling mechanisms.  Semin Thromb Hemost. 2004;  30 , (in press)
  • 120 Rosa J P, George J N, Bainton D F, Nurden A T, Caen J P, McEver R P. Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface.  J Clin Invest. 1987;  80 1138-1146
  • 121 Raccuglia G. Gray platelet syndrome. A variety of qualitative platelet disorder.  Am J Med. 1971;  51 818-828
  • 122 Gerrard J M, Phillips D R, Rao G H et al.. Biochemical studies of two patients with the gray platelet syndrome Selective deficiency of platelet alpha granules.  J Clin Invest. 1980;  66 102-109
  • 123 Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J. Defective alpha-granule production in megakaryocytes from gray platelet syndrome: ultrastructural studies of bone marrow cells and megakaryocytes growing in culture from blood precursors.  Am J Pathol. 1981;  102 10-19
  • 124 Cramer E M, Vainchenker W, Vinci G, Guichard J, Breton-Gorius J. Gray platelet syndrome: immunoelectron microscopic localization of fibrinogen and von Willebrand factor in platelets and megakaryocytes.  Blood. 1985;  66 1309-1316
  • 125 Levy-Toledano S, Caen J P, Breton-Gorius J et al.. Gray platelet syndrome: alpha-granule deficiency. Its influence on platelet function.  J Lab Clin Med. 1981;  98 831-848
  • 126 Nurden A T, Kunicki T J, Dupuis D, Soria C, Caen J P. Specific protein and glycoprotein deficiencies in platelets isolated from two patients with the gray platelet syndrome.  Blood. 1982;  59 709-718
  • 127 Gebrane-Younes J, Cramer E M, Orcel L, Caen J P. Gray platelet syndrome. Dissociation between abnormal sorting in megakaryocyte alpha-granules and normal sorting in Weibel-Palade bodies of endothelial cells.  J Clin Invest. 1993;  92 3023-3028
  • 128 Hannah M J, Williams R, Kaur J, Hewlett L J, Cutler D F. Biogenesis of Weibel-Palade bodies.  Semin Cell Dev Biol. 2002;  13 313-324
  • 129 White J G. Ultrastructural studies of the gray platelet syndrome.  Am J Pathol. 1979;  95 445-462
  • 130 Falik-Zaccai T C, Anikster Y, Rivera C E et al.. A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic characteristics.  Mol Genet Metab. 2001;  74 303-313
  • 131 Jantunen E, Hanninen A, Naukkarinen A, Vornanen M, Lahtinen R. Gray platelet syndrome with splenomegaly and signs of extramedullary hematopoiesis: a case report with review of the literature.  Am J Hematol. 1994;  46 218-224
  • 132 Weiss H J, Lages B, Vicic W, Tsung L Y, White J G. Heterogeneous abnormalities of platelet dense granule ultrastructure in 20 patients with congenital storage pool deficiency.  Br J Haematol. 1993;  83 282-295
  • 133 Huizing M, Helip-Wooley A, Dorward H, Claassen D, Hess R, Gahl W A. Hermansky-Pudlak syndrome: a model for abnormal vesicle formation and trafficking.  Pigment Cell Res. 2003;  16 584
  • 134 Swank R T, Novak E K, McGarry M P et al.. Abnormal vesicular trafficking in mouse models of Hermansky-Pudlak syndrome.  Pigment Cell Res. 2000;  13(suppl 8) 59-67
  • 135 Gunay-Aygun M, Huizing M, Gahl W A. Molecular defects that affect platelet dense granules.  Semin Thromb Hemost. 2004;  30 , (in press)
  • 136 Fukami M H. Isolation of dense granules from human platelets.  Methods Enzymol. 1992;  215 36-42
  • 137 Fukami M H. Dense granule factors. In: von Bruchhausen F, Walter U Platelets and Their Factors. Vol. 126. New York; Springer 1997: 419-432

Guy L ReedM.D.  Assoc. Prof.

Harvard, School of Public Health, Cardiovascular Biology

677 Huntington Ave.

Boston, MA 02115

Email: reed@cvlab.harvard.edu