Semin Liver Dis 2004; 24(3): 257-272
DOI: 10.1055/s-2004-832939
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Cellular Signaling Mechanisms in Alcohol-Induced Liver Damage

Jan B. Hoek1 , John G. Pastorino1
  • 1Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
03 September 2004 (online)

Chronic excessive alcohol intake is associated with multiple liver defects ranging from mild steatosis to advanced cirrhosis. However, the mechanisms by which chronic ethanol intake affects liver function remain a matter of intense debate and investigation. The liver is the major site of ethanol metabolism in the body, and a wide range of metabolic alterations is associated with ethanol intake. As a result, the liver is exposed to dramatic changes in redox state, transient hypoxia, episodes of oxidative stress, and the products of ethanol metabolism, such as acetaldehyde, acetate, and fatty acid ethyl esters. Chronic ethanol consumption is associated with increased levels of circulating endotoxins and proinflammatory cytokines that affect liver function. A major source of the increase in circulating proinflammatory cytokines is the Kupffer cells, which are sensitized to generate tumor necrosis factor alpha (TNF-α) through multiple mechanisms. In addition, the hepatocytes themselves are more susceptible to external stress. In isolated hepatocytes, this effect of chronic ethanol is evident in a greater sensitivity to proapoptotic challenges and, more specifically, to the cytotoxic actions of TNF-α. The mechanism by which hepatocytes are sensitized to external stress remains poorly characterized but may involve defects in mitochondrial function and oxidative defense mechanisms, the activation of death-promoting signaling pathways, and the inactivation of survival pathways. In this article, we emphasize the role of the stress-activated mitogen-activated protein kinase (MAPK) cascades in the onset of cell injury and their regulation by the phosphoinositide-3-kinase/Akt signaling cascade, which appears to function as the central integrating module of the stress-signaling machinery in the cell. We also discuss the complications and challenges of extrapolating these findings to the conditions in vivo and what we can learn from these studies regarding the nature of the liver defects associated with chronic alcohol consumption.

REFERENCES

  • 1 Lieber C S. Alcohol: its metabolism and interaction with nutrients.  Annu Rev Nutr. 2000;  20 395-430
  • 2 Diehl A M. Nonalcoholic fatty liver disease: implications for alcoholic liver disease pathogenesis.  Alcohol Clin Exp Res. 2001;  25 8S-14S
  • 3 Crabb D W. Ethanol oxidizing enzymes: roles in alcohol metabolism and alcoholic liver disease.  Prog Liver Dis. 1995;  13 151-172
  • 4 Schenker S. Medical consequences of alcohol abuse: is gender a factor?.  Alcohol Clin Exp Res. 1997;  21 179-181
  • 5 Gao B. Interaction of alcohol and hepatitis viral proteins: implication in synergistic effect of alcohol drinking and viral hepatitis on liver injury.  Alcohol. 2002;  27 69-72
  • 6 Diehl A M. Cytokine regulation of liver injury and repair.  Immunol Rev. 2000;  174 160-171
  • 7 Yin M, Wheeler M D, Kono H et al.. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice.  Gastroenterology. 1999;  117 942-952
  • 8 Iimuro Y, Gallucci R M, Luster M I, Kono H, Thurman R G. Antibodies to tumor necrosis factor= α attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat.  Hepatology. 1997;  26 1530-1537
  • 9 McClain C, Hill D, Schmidt J, Diehl A M. Cytokines and alcoholic liver disease.  Semin Liver Dis. 1993;  13 170-182
  • 10 Rao R K, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease.  Am J Physiol Gastrointest Liver Physiol. 2004;  286 G881-G884
  • 11 Nagy L E. Recent insights into the role of the innate immune system in the development of alcoholic liver disease.  Exp Biol Med (Maywood). 2003;  228 882-890
  • 12 Thurman R G, Bradford B U, Iimuro Y et al.. Mechanisms of alcohol-induced hepatotoxicity: studies in rats.  Front Biosci. 1999;  4 e42-e46
  • 13 Nanji A A. Apoptosis and alcoholic liver disease.  Semin Liver Dis. 1998;  18 187-190
  • 14 Kono H, Rusyn I, Yin M et al.. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease.  J Clin Invest. 2000;  106 867-872
  • 15 Liu H, Jones B E, Bradham C, Czaja M J. Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G257-G266
  • 16 Tsukamoto H, Takei Y, McClain C J et al.. How is the liver primed or sensitized for alcoholic liver disease?.  Alcohol Clin Exp Res. 2001;  25 171S-181S
  • 17 Colell A, Garcia-Ruiz C, Miranda M et al.. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor.  Gastroenterology. 1998;  115 1541-1551
  • 18 Deaciuc I V, D'Souza N B, de Villiers W J et al.. Inhibition of caspases in vivo protects the rat liver against alcohol-induced sensitization to bacterial lipopolysaccharide.  Alcohol Clin Exp Res. 2001;  25 935-943
  • 19 Fernandez-Checa J C. Redox regulation and signaling lipids in mitochondrial apoptosis.  Biochem Biophys Res Commun. 2003;  304 471-479
  • 20 Yang S Q, Lin H Z, Yin M, Albrecht J H, Diehl A M. Effects of chronic ethanol consumption on cytokine regulation of liver regeneration.  Am J Physiol. 1998;  275 G696-G704
  • 21 Aggarwal B B. Signalling pathways of the TNF superfamily: a double-edged sword.  Nat Rev Immunol. 2003;  3 745-756
  • 22 Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling.  Cell Death Differ. 2003;  10 45-65
  • 23 Chung J Y, Park Y C, Ye H, Wu H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction.  J Cell Sci. 2002;  115 679-688
  • 24 Karran L, Dyer M J. Proteolytic cleavage of molecules involved in cell death or survival pathways: a role in the control of apoptosis?.  Crit Rev Eukaryot Gene Expr. 2001;  11 269-277
  • 25 Kroemer G, Reed J C. Mitochondrial control of cell death.  Nat Med. 2000;  6 513-519
  • 26 Adam D, Ruff A, Strelow A, Wiegmann K, Kronke M. Induction of stress-activated protein kinases/c-Jun N-terminal kinases by the p55 tumour necrosis factor receptor does not require sphingomyelinases.  Biochem J. 1998;  333 343-350
  • 27 Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase.  J Biol Chem. 1998;  273 5916-5922
  • 28 Kreder D, Krut O, Adam-Klages S et al.. Impaired neutral sphingomyelinase activation and cutaneous barrier repair in FAN-deficient mice.  EMBO J. 1999;  18 2472-2479
  • 29 Garcia-Ruiz C, Colell A, Mari M et al.. Defective TNF-α-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice.  J Clin Invest. 2003;  111 197-208
  • 30 Mari M, Colell A, Morales A et al.. Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis.  J Clin Invest. 2004;  113 895-904
  • 31 Lu S C, Tsukamoto H, Mato J M. Role of abnormal methionine metabolism in alcoholic liver injury.  Alcohol. 2002;  27 155-162
  • 32 Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice.  Antioxid Redox Signal. 2002;  4 415-425
  • 33 Ueda S, Masutani H, Nakamura H et al.. Redox control of cell death.  Antioxid Redox Signal. 2002;  4 405-414
  • 34 Pastorino J G, Shulga N, Hoek J B. TNF-α-induced cell death in ethanol-exposed cells depends on p38 MAPK signaling but is independent of Bid and caspase-8.  Am J Physiol Gastrointest Liver Physiol. 2003;  285 G503-G516
  • 35 Lei K, Davis R J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis.  Proc Natl Acad Sci USA. 2003;  100 2432-2437
  • 36 Heyninck K, Wullaert A, Beyaert R. Nuclear factor-κB plays a central role in tumour necrosis factor-mediated liver disease.  Biochem Pharmacol. 2003;  66 1409-1415
  • 37 Liu H, Lo C R, Czaja M J. NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun.  Hepatology. 2002;  35 772-778
  • 38 Czaja M J. The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G875-G879
  • 39 Franke T F, Hornik C P, Segev L, Shostak G A, Sugimoto C. PI3K/Akt and apoptosis: size matters.  Oncogene. 2003;  22 8983-8998
  • 40 Brazil D P, Park J, Hemmings B A. PKB binding proteins. Getting in on the Akt.  Cell. 2002;  111 293-303
  • 41 Pastorino J G, Tafani M, Farber J L. Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway.  J Biol Chem. 1999;  274 19411-19416
  • 42 Zhou X M, Liu Y, Payne G, Lutz R J, Chittenden T. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155.  J Biol Chem. 2000;  275 25046-25051
  • 43 Datta S R, Dudek H, Tao X et al.. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.  Cell. 1997;  91 231-241
  • 44 Dan H C, Sun M, Kaneko S et al.. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP).  J Biol Chem. 2004;  279 5405-5412
  • 45 Kim A H, Khursigara G, Sun X, Franke T F, Chao M V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1.  Mol Cell Biol. 2001;  21 893-901
  • 46 Yuan Z Q, Feldman R I, Sussman G E et al.. AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance.  J Biol Chem. 2003;  278 23432-23440
  • 47 Liao Y, Hung M C. Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis.  Mol Cell Biol. 2003;  23 6836-6848
  • 48 Kim A H, Yano H, Cho H et al.. Akt1 regulates a JNK scaffold during excitotoxic apoptosis.  Neuron. 2002;  35 697-709
  • 49 Datta S R, Brunet A, Greenberg M E. Cellular survival: a play in three Akts.  Genes Dev. 1999;  13 2905-2927
  • 50 Factor V, Oliver A L, Panta G R et al.. Roles of Akt/PKB and IKK complex in constitutive induction of NF-κB in hepatocellular carcinomas of transforming growth factor α/c-myc transgenic mice.  Hepatology. 2001;  34 32-41
  • 51 Sulis M L, Parsons R. PTEN: from pathology to biology.  Trends Cell Biol. 2003;  13 478-483
  • 52 Vasudevan K M, Gurumurthy S, Rangnekar V M. Suppression of PTEN expression by NF-κB prevents apoptosis.  Mol Cell Biol. 2004;  24 1007-1021
  • 53 Hildt E, Oess S. Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I.  J Exp Med. 1999;  189 1707-1714
  • 54 Yan F, Polk D B. Kinase suppressor of ras is necessary for tumor necrosis factor α activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells.  Cancer Res. 2001;  61 963-969
  • 55 Begum N, Ragolia L, Srinivasan M. Effect of tumor necrosis factor-α on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells.  Eur J Biochem. 1996;  238 214-220
  • 56 Isayama F, Froh M, Yin M et al.. TNF α-induced Ras activation due to ethanol promotes hepatocyte proliferation independently of liver injury in the mouse.  Hepatology. 2004;  39 721-731
  • 57 Hong F, Kim W H, Tian Z et al.. Elevated interleukin-6 during ethanol consumption acts as a potential endogenous protective cytokine against ethanol-induced apoptosis in the liver: involvement of induction of Bcl-2 and Bcl-x(L) proteins.  Oncogene. 2002;  21 32-43
  • 58 Sun Z, Klein A S, Radaeva S et al.. In vitro interleukin-6 treatment prevents mortality associated with fatty liver transplants in rats.  Gastroenterology. 2003;  125 202-215
  • 59 Kovalovich K, DeAngelis R A, Li W et al.. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice.  Hepatology. 2000;  31 149-159
  • 60 Taub R. Hepatoprotection via the IL-6/Stat3 pathway.  J Clin Invest. 2003;  112 978-980
  • 61 Taub R, Greenbaum L E, Peng Y. Transcriptional regulatory signals define cytokine-dependent and -independent pathways in liver regeneration.  Semin Liver Dis. 1999;  19 117-127
  • 62 Hoek J B, Cahill A, Pastorino J G. Alcohol and mitochondria: a dysfunctional relationship.  Gastroenterology. 2002;  122 2049-2063
  • 63 Hoek J B, Pastorino J G. Ethanol, oxidative stress, and cytokine-induced liver cell injury.  Alcohol. 2002;  27 63-68
  • 64 Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G193-G199
  • 65 Bowie A, O'Neill L A. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries.  Biochem Pharmacol. 2000;  59 13-23
  • 66 Soriano M E, Nicolosi L, Bernardi P. Desensitization of the permeability transition pore by cyclosporin A prevents activation of the mitochondrial apoptotic pathway and liver damage by TNF-alpha.  J Biol Chem. 2004;  , (E-pub ahead of print)
  • 67 Leist M, Gantner F, Naumann H et al.. Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins.  Gastroenterology. 1997;  112 923-934
  • 68 Pastorino J G, Hoek J B. Ethanol potentiates tumor necrosis factor-α cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition.  Hepatology. 2000;  31 1141-1152
  • 69 Xu Y, Bialik S, Jones B E et al.. NF-κB inactivation converts a hepatocyte cell line TNF-α response from proliferation to apoptosis.  Am J Physiol. 1998;  275 C1058-C1066
  • 70 Park M T, Choi J A, Kim M J et al.. Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells.  J Biol Chem. 2003;  278 50624-50634
  • 71 Fernandez-Checa J C, Kaplowitz N, Garcia-Ruiz C et al.. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect.  Am J Physiol. 1997;  273 G7-17
  • 72 Bailey S M, Patel V B, Young T A, Asayama K, Cunningham C C. Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver.  Alcohol Clin Exp Res. 2001;  25 726-733
  • 73 Fernandez-Checa J C, Colell A, Garcia-Ruiz C. S-adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease.  Alcohol. 2002;  27 179-183
  • 74 Bailey S M, Cunningham C C. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease.  Free Radic Biol Med. 2002;  32 11-16
  • 75 Neuman M G, Shear N H, Bellentani S, Tiribelli C. Role of cytokines in ethanol-induced cytotoxicity in vitro in Hep G2 cells.  Gastroenterology. 1998;  115 157-166
  • 76 Pastorino J G, Marcikeviciute A, Cahill A, Hoek J B. Potentiation by chronic ethanol treatment of the mitochondrial permeability transition.  Biochem Biophys Res Commun. 1999;  265 405-409
  • 77 Pramanik R, Qi X, Borowicz S et al.. p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p 38 MAPK signal specificity.  J Biol Chem. 2003;  278 4831-4839
  • 78 Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1.  J Biol Chem. 2002;  277 30792-30797
  • 79 Gilot D, Loyer P, Corlu A et al.. Liver protection from apoptosis requires both blockage of initiator caspase activities and inhibition of ASK1/JNK pathway via glutathione S-transferase regulation.  J Biol Chem. 2002;  277 49220-49229
  • 80 Diehl A M. Nonalcoholic steatosis and steatohepatitis. IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G1-G5
  • 81 Higuchi H, Gores G J. Mechanisms of liver injury: an overview.  Curr Mol Med. 2003;  3 483-490
  • 82 Yang S, Lin H, Diehl A M. Fatty liver vulnerability to endotoxin-induced damage despite NF-κB induction and inhibited caspase 3 activation.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G382-G392
  • 83 Koteish A, Yang S, Lin H, Huang X, Diehl A M. Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation.  J Biol Chem. 2002;  277 13037-13044
  • 84 Jaeschke H, Gujral J S, Bajt M L. Apoptosis and necrosis in liver disease.  Liver Int. 2004;  24 85-89
  • 85 Foghsgaard L, Wissing D, Mauch D et al.. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor.  J Cell Biol. 2001;  153 999-1010
  • 86 Guicciardi M E, Miyoshi H, Bronk S F, Gores G J. Cathepsin B knockout mice are resistant to tumor necrosis factor-α-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications.  Am J Pathol. 2001;  159 2045-2054
  • 87 Madge L A, Li J H, Choi J, Pober J S. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis.  J Biol Chem. 2003;  278 21295-21306
  • 88 Liu N, Raja S M, Zazzeroni F et al.. NF-κB protects from the lysosomal pathway of cell death.  EMBO J. 2003;  22 5313-5322
  • 89 Ono K, Kim S O, Han J. Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor α-induced cell death.  Mol Cell Biol. 2003;  23 665-676
  • 90 Nicotera P, Melino G. Regulation of the apoptosis-necrosis switch.  Oncogene. 2004;  23 2757-2765
  • 91 Los M, Mozoluk M, Ferrari D et al.. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling.  Mol Biol Cell. 2002;  13 978-988
  • 92 Kuhnle S, Nicotera P, Wendel A, Leist M. Prevention of endotoxin-induced lethality, but not of liver apoptosis in poly(ADP-ribose) polymerase-deficient mice.  Biochem Biophys Res Commun. 1999;  263 433-438
  • 93 Plas D R, Thompson C B. Cell metabolism in the regulation of programmed cell death.  Trends Endocrinol Metab. 2002;  13 75-78
  • 94 Hardie D G. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status.  Endocrinology. 2003;  144 5179-5183
  • 95 You M, Crabb D W. Recent Advances in Alcoholic Liver Disease II. Minireview: molecular mechanisms of alcoholic fatty liver.  Am J Physiol Gastrointest Liver Physiol. 2004;  287 G1-G6

Jan B HoekPh.D. 

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University

1020 Locust Street, Rm. 269 JAH

Philadelphia, PA 19107

Email: Jan.Hoek@jefferson.edu