Synlett 2004(11): 2000-2004  
DOI: 10.1055/s-2004-830876
LETTER
© Georg Thieme Verlag Stuttgart · New York

Hetarynic Synthesis and Chemical Transformations of Dihydrodiquinolinopyrazines

Irina-Claudia Grig-Alexaa,b, Ethel Garniera, Adriana-Luminita Finarua,b, Lucia Ivanb,c, Christian Jarryd, Jean-Michel Légerd, Paul Caubèrea, Gérald Guillaumet*a
a Institut de Chimie Organique et Analytique, UMR CNRS 6005, Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France
e-Mail: gerald.guillaumet@univ-orleans.fr;
b Laboratorul de Sinteza Organica si Analiza Structurala, Universitatea Bacau, 157, Calea Marasesti, 600115 Bacau, Romania
c Laboratorul de Sinteza Organica, Facultatea de Chimie, Universitatea Bucuresti, Bd. Elisabeta, Bucuresti, Romania
d Pharmacochimie, EA 2962, Université Victor Segalen Bordeaux II, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Weitere Informationen

Publikationsverlauf

Received 17 May 2004
Publikationsdatum:
06. August 2004 (online)

Abstract

New dihydrodiquinolinopyrazines (DHDQP) were easily obtained by hetarynic dimerization of 2-alkylamino-3-bromoquinolines in the presence of complex base NaNH2-t-BuONa. Functionalization and derivatization of these new heterocycles are described.

    References

  • 1a Caubère P. Acc. Chem. Res.  1974,  7:  301 
  • 1b Caubère P. Top. Curr. Chem.  1978,  73:  50 
  • 1c Caubère P. Rev. Heteroatom. Chem.  1991,  4:  78 
  • 1d Caubère P. Chem. Rev.  1993,  93:  2317 
  • 1e Caubère P. J. Chin. Chem. Soc.  1998,  45:  451 ; and references cited in these reviews
  • 2a Carré MC. Youlassani A. Caubère P. Saint-Aubin-Floch A. Blanc M. Advenier C. J. Med. Chem.  1984,  27:  792 
  • 2b Jamart-Grégoire B. Caubère P. Blanc M. Gnassounou JP. Advenier C. J. Med. Chem.  1989,  32:  315 
  • 2c Aatif A. Mouaddib A. Carré MC. Jamart-Grégoire B. Geoffroy P. Zouaoui MA. Caubère P. Blanc M. Gnassounou JP. Advenier C. Eur. J. Med. Chem.  1990,  25:  441 
  • 2d Kuehm-Caubère C. Caubère P. Jamart-Grégoire B. Nègre-Salvayre A. Bonnefont-Rousselot D. Bizot-Espiard JG. Pfeiffer B. Caignard DH. Guardiola-Lamaître B. Renard P. J. Med. Chem.  1997,  40:  1201 
  • 3 Rodriguez I. Kuehm-Caubère C. Vinter-Pasquier K. Renard P. Pfeiffer B. Caubère P. Tetrahedron Lett.  1998,  39:  7283 
  • 4 Blanchard S. Rodriguez I. Kuehm-Caubère C. Renard P. Pfeiffer B. Guillaumet G. Caubère P. Tetrahedron  2002,  58:  3513 
  • 5a Blanchard S. Rodriguez I. Caubère P. Guillaumet G. Synlett  2002,  1356 
  • 5b Grig-Alexa IC. Finaru AL. Ivan L. Caubère P. Guillaumet G. Tetrahedron Lett.  2004,  45:  2343 
  • 6a Caubère P, Guillaumet G, Rodriguez I, Vinter-Pasquier K, Kuehm-Caubère C, Blanchard S, Atassi G, Pierre A, Pfeiffer B, and Renard PP. inventors; Eur. Pat. Appl. EP  96986.  ; Chem. Abstr. 2000, 132, 22978
  • 6b Blanchard S. Rodriguez I. Tardy C. Baldeyrou B. Bailly C. Colson P. Houssier C. Léonce S. Kraus-Berthier L. Pfeiffer B. Renard P. Pierre A. Caubère P. Guillaumet G. J. Med. Chem.  2004,  47:  978 
  • 7 Sabol MR. Owen JM. Erickson WR. Synth. Commun.  2000,  30:  427 
  • 8 Miura Y. Takaku S. Nawata Y. Hamana M. Heterocycles  1991,  32:  1579 
  • 9 Marsais F. Godard A. Queguiner G. J. Heterocycl. Chem.  1989,  26:  1589 
  • 12 Marson CM. Giles PR. Synthesis Using Vilsmeier Reagents   C.R.C. Press; Boca Raton: 1994. 
  • 13a Gross H. Rieche A. Mathey G. Chem. Ber.  1963,  96:  308 
  • 13b Rieche A. Gross H. Hoft E. Org. Synth., Coll. Vol. V  1973,  49 
  • 14 Satya P. Mukta G. Rajive G. Synlett  2000,  1115 
  • 17a Brown HC. Krishnamurthy S. Tetrahedron  1979,  35:  367 
  • 17b Seyden-Penne J. Reductions by the Alumino and Borohydrides in Organic Synthesis   VCH-Lavoisier; Paris: 1991. 
  • 18a Pratt WB. Ruddon RW. Ensminger WD. Maybaum J. The Anticancer Drugs   2nd ed.:  Oxford University; Oxford: 1994. 
  • 18b Antonini I. Polucci P. Cola D. Bontemps-Gracz M. Pescalli N. Menta E. Martelli S. Anti-Cancer Drug Des.  1996,  11:  339 
  • 18c Takemura Y. Jackman AL. Anti-Cancer Drugs  1997,  8:  3 
  • 19 Baik W. Yun S. Rhee JV. Russel GA. J. Chem. Soc., Perkin Trans. 1  1996,  1777 
10

Under optimal conditions 1 equiv of bromo derivative necessitates 2 equiv of complex base (in other words 4 equiv NaNH2 and 2 equiv of t-BuONa) and one supplementary equiv of NaNH2 for the formation of the sodium salt of the bromoamine. Thus, the basic reagent must be prepared by addition of 2 equiv of t-BuOH to 7 equiv of NaNH2.

11

Compound 6b: IR (KBr): 1345, 1452 cm-1. MS: m/z = 397 [M + 1]. 1H NMR (250 MHz, CDCl3): δ = 1.06 (6 H, q, J = 7.3 Hz, 2 CH3), 1.54-1.58 (4 H, m, 2 CH2), 1.70-1.82 (4 H, m, 2 CH2), 4.12-4.15 (4 H, t, 2 CH2N, J = 6.8 Hz), 6.79 (2 H, s), 7.15 (2 H, ddd, J = 7.3 Hz, J = 6.9 Hz, J = 1.2 Hz), 7.29 (2 H, ddd, J = 1.5 Hz, J = 6.9 Hz, J = 7.3 Hz), 7.40 (2 H, dd, J = 7.3 Hz, J = 1.5 Hz), 7.53 (2 H, dd, J = 7.3 Hz, J = 1.2 Hz). 13C NMR (62.5 MHz, CDCl3): δ = 13.8 (2 CH3), 20.6 (2 CH2), 31.5 (2 CH2), 41.3 (2 CH2N), 119.1 (2 C), 119.5 (2 CH), 122.4 (2 CH), 126.0 (2 CH), 127.9 (2 CH), 129.7 (2 CH), 130.2 (2 C), 140.6 (2 C), 144.4 (2 C). Compound 7b: IR (KBr): 1347, 1455 cm-1. MS: m/z = 397 [M + 1]. 1H NMR (250 MHz, CDCl3): δ = 1.06 (6 H, q, J = 7.2 Hz, 2 CH3), 1.47-1.62 (4 H, m, 2 CH2), 1.74-1.86 (4 H, m, 2 CH2), 3.61 (2 H, t, J = 7.6 Hz, CH2N), 4.49 (2 H, t, J = 7.6 Hz, CH2N), 6.66 (2 H, s), 7.16 (2 H, ddd, J = 7.1 Hz, J = 6.8 Hz, J = 1.1 Hz), 7.32 (2 H, ddd, J = 1.2 Hz, J = 6.8 Hz, J = 7.5 Hz), 7.58 (2 H, dd, J = 7.1 Hz, J = 1.2 Hz), 7.65 (2 H, dd, J = 7.5 Hz, J = 1.1 Hz). 13C NMR (62.5 MHz, CDCl3): δ = 13.8 (2 CH3), 20.6 (2 CH2), 32.9 (CH2), 33.5 (CH2), 41.3 (CH2N), 42.9 (CH2N), 116.6 (2 C), 120.3 (2 CH), 121.4 (2 CH), 123.3 (2 CH), 125.0 (2 CH), 127.8 (2 CH), 128.4 (2 C), 137.6 (2 C), 145.5 (2 C).

15

Compound 8: IR (KBr): 1433, 1676 cm-1. MS: m/z = 425 [M + 1]. 1H NMR (250 MHz, CDCl3): δ = 0.74 (t, 3 H, CH3, J = 7.2 Hz), 1.03 (t, 3 H, CH3, J = 7.2 Hz), 1.20-1.29 (m, 2 H, CH2), 1.51-1.59 (m, 2 H, CH2), 1.65-1.82 (m, 4 H, 2 CH2), 4.24 (t, 2 H, CH2N, J = 7.5 Hz), 4.31 (t, 2 H, CH2N, J = 6.9 Hz), 7.14 (s, 1 H), 7.28-7.48 (m, 4 H), 7.56-7.64 (m, 2 H), 7.71 (d, 1 H, J = 8.1 Hz), 8.60 (dd, 1 H, J = 1.5 Hz, J = 8.1 Hz), 10.31 (s, 1 H, CHO). 13C NMR (62.5 MHz, CDCl3): δ = 13.7, 14.0 (2 CH3), 19.8, 20.3 (2 CH2), 27.4, 30.4 (2 CH2), 41.9, 56.7 (2 CH2N), 114.2 (CH), 119.5, 123.2 (2 C), 123.6, 125.3, 125.6 (3 CH), 126.2, 126.8 (2 CH), 127.0 (C), 127.2, 127.4, 127.6 (3 CH) 129.5, 136.5, 142.3, 142.9, 146.4, 147.4 (6 C), 189.7 (CHO).

16

Supplementary X-ray Crystallographic data: Cambridge Crystallographic Data Centre, University Chemical Lab, Lensfield Road Cambridge, CB2 1EW, UK; http:/www.deposit@chemcrys.cam.ac.uk.

20

Compound 15: IR (KBr): 1470, 1523 cm-1. MS: m/z = 442 [M + 1]. 1H NMR (250 MHz, CDCl3): δ = 1.04 (t, 6 H, 2 CH3, J = 6.8 Hz), 1.50-1.59 (m, 4 H, 2 CH2), 1.69-1.78 (m, 4 H, 2 CH2), 4.08-4.14 (m, 4 H, 2 CH2N), 6.70 (s, 1 H), 6.87 (s, 1 H), 7.21-7.24 (m, 1 H), 7.31 (dd, 1 H, J = 1.2 Hz, J = 6.8 Hz), 7.37 (d, 1 H, J = 8.8 Hz), 7.42 (dd, 1 H, J = 1.2 Hz, J = 6.8 Hz), 7.55 (d, 1 H, J = 8.3 Hz), 7.88 (dd, 1 H, J = 2.2 Hz, J = 8.8 Hz), 8.34 (d, 1 H, J = 2.2 Hz). 13C NMR (62.5 MHz, CDCl3): δ = 14.0, 14.1 (2 CH3), 20.3, 20.4 (2 CH2), 27.2, 27.3 (2 CH2), 42.3, 42.5 (2 CH2N), 110.2, 113.4, 118.3, 122.1, 124.9, 126.1, 126.8, 127.4 (9 CH), 128.1, 128.2, 131.9, 132.0, 141.9, 142.9, 144.0, 146.1, 146.5 (9 C).