Int J Sports Med 2005; 26: S28-S37
DOI: 10.1055/s-2004-830512
© Georg Thieme Verlag KG Stuttgart · New York

Measurement of Substrate Oxidation During Exercise by Means of Gas Exchange Measurements

A. E. Jeukendrup1 , G. A. Wallis1
  • 1School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK
Further Information

Publication History

Accepted after revision: October 29, 2004

Publication Date:
22 December 2004 (online)

Abstract

Measures of substrate oxidation have traditionally been calculated from indirect calorimetry measurements using stoichiometric equations. Although this has proven to be a solid technique and it has become one of the standard techniques to measure whole body substrate metabolism, there are also several limitations that have to be considered. When indirect calorimetry is used during exercise most of the assumptions on which the method is based hold true although changes in the size of the bicarbonate pool at higher exercise intensities may invalidate the calculations of carbohydrate and fat oxidation. Most of the existing equations are based on stoichiometric equations of glucose oxidation and the oxidation of a triacylglycerol that is representative of human adipose tissue. However, in many exercise conditions, glycogen and not glucose is the predominant carbohydrate substrate. Therefore we propose slightly modified equations for the calculation of carbohydrate and fat oxidation for use during low to high intensity exercise. Studies that investigated fat oxidation over a wide range of intensities and that determined the exercise intensity at which fat oxidation is maximal have provided useful insights in the variation in fat oxidation between individuals and in the factors that affect fat oxidation. Fat oxidation during exercise can be influenced by exercise intensity and duration, diet, exercise training, exercise mode and gender. Although a number of important factors regulating fat oxidation have been identified, it is apparent that a considerable degree of inter-subject variability in substrate utilization persists and cannot be explained by the aforementioned factors. Future research should investigate the causes of the large inter-individual differences in fat metabolism between individuals and their links with various disease states.

References

  • 1 Acheson K, Shutz Y, Bessard T, Anantharaman K, Flatt J, Jequier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man.  Am J Clin Nutr. 1988;  48 240-247
  • 2 Acheson K J, Flatt J P, Jéquier E. Glycogen synthesis versus lipogenesis after a 500 g carbohydrate meal in man.  Metabolism. 1982;  31 1234-1240
  • 3 Achten J, Gleeson M, Jeukendrup A E. Determination of the exercise intensity that elicits maximal fat oxidation.  Med Sci Sports Exerc. 2002;  34 92-97
  • 4 Achten J, Jeukendrup A E. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation.  J Sports Sci. 2003;  21 1017-1024
  • 5 Achten J, Jeukendrup A E. Effects of pre-exercise ingestion of carbohydrate on glycaemic and insulinaemic responses during subsequent exercise at differing intensities.  Eur J Appl Physiol. 2003;  88 466-471
  • 6 Achten J, Jeukendrup A E. Maximal fat oxidation during exercise in trained men.  Int J Sports Med. 2003;  24 603-608
  • 7 Achten J, Venables M C, Jeukendrup A E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities.  Metabolism. 2003;  52 747-752
  • 8 Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man.  J Clin Invest. 1974;  53 1080-1090
  • 9 Atwater W O, Benedict F G. A Respiration Calorimeter with Appliances for the Direct Determination of Oxygen. Washington DC; Carnegie Institute of Washington 1905
  • 10 Atwater W O, Rosa E B. Description of neo respiration calorimeter and experiments on the conservation of energy in the human body.  Off Exp Sta Bull. 1899;  63
  • 11 Bergman B C, Brooks G A. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men.  J Appl Physiol. 1999;  86 479-487
  • 12 Bergman B C, Horning M A, Casazza G A, Wolfel E E, Butterfield G E, Brooks G A. Endurance training increases gluconeogenesis during rest and exercise in men.  Am J Physiol. 2000;  278 244-251
  • 13 Berrie E M, Hirsch J, Most J, McNamara D J, Thornton J. The relationship of dietary fat to plasma lipid levels as studied by factor analysis of adipose tissue fatty acid composition in free-living middle-aged American men.  Am J Clin Nutr. 1986;  44 220-231
  • 14 Broeder C E, Brenner M, Hofman Z, Paijmans I J, Thomas E L, Wilmore J H. The metabolic consequences of low and moderate intensity exercise with or without feeding in lean and borderline obese males.  Int J Obes. 1991;  15 95-104
  • 15 Brouwer E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange. (Oxygen and carbonic acid output) and urine-N.  Acta Physiol Pharmacol Neerl. 1957;  6 795-802
  • 16 Carter J, Jeukendrup A E. Validity and reliability of three commercially available breath-by-breath respiratory systems.  Eur J Appl Physiol. 2002;  86 435-441
  • 17 Christensen E H. Der Stoffwechsel und die respiratorischen Funktionen bei schwerer körperlicher Arbeit.  Skand Arch Physiol. 1932;  81 160-171
  • 18 Christensen E H, Hansen O. Arbeitsfähigkeit und Ernährung.  Scand Arch Physiol. 1939;  81 160-171
  • 19 Christie W W, Moore J H, Lorimer A R, Lawrie T D. The structures of triglycerides from atherosclerotic plaques and other human tissues.  Lipids. 1971;  6 854-856
  • 20 Consolazio C F, Johnson R E, Pecora L J. Physiological Measurements of Metabolic Functions in Man. New York; McGraw-Hill 1963: 313-339
  • 21 Edwards H T, Margaria R, Dill D B. Metabolic rate, blood sugar and the utilization of carbohydrate.  Am J Physiol. 1934;  108 203-209
  • 22 Ferrannini E. The theoretical bases of indirect calorimetry: a review.  Metabolism. 1988;  37 287-301
  • 23 Flatt J-P. The biochemistry of energy expenditure. Bray GA Recent Advances in Obesity Research. London; Newman 1978: 211-228
  • 24 Frayn K N. Calculation of substrate oxidation rates in vivo from gaseous exchange.  J Appl Physiol. 1983;  55 628-634
  • 25 Friedlander A, Casazza G, Horning M, Buddinger T, Brooks G A. Effects of exercise intensity and training on lipid metabolism in young women.  Am J Physiol. 1998;  275 853-863
  • 26 Friedlander A L, Casazza G A, Horning M A, Huie M J, Piacentini M F, Trimmer J K, Brooks G A. Training-induced alterations of carbohydrate metabolism in women: women respond differently from men.  J Appl Physiol. 1998;  85 1175-1186
  • 27 Friedlander A L, Casazza G A, Horning M A, Usaj A, Brooks G A. Endurance training increases fatty acid turnover, but not fat oxidation, in young men.  J Appl Physiol. 1999;  86 2097-2105
  • 28 Goedecke J H, Clair Gibson St A, Grobler L, Collins M, Noakes T D, Lambert E V. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes.  Am J Physiol Endocrinol Metab. 2000;  279 1325-1334
  • 29 Gore C J, Catcheside P G, French S N, Bennett J M, Laforgia J. Automated V·O2max calibrator for open-circuit indirect calorimetry systems.  Med Sci Sports Exerc. 1997;  29 1095-1103
  • 30 Gore C J, Clark R J, Shipp N J, Van Der Ploeg G E, Withers R T. CPX/D underestimates V·O(2) in athletes compared with an automated Douglas bag system.  Med Sci Sports Exerc. 2003;  35 1341-1347
  • 31 Hurley B F, Nemeth P M, Martin III W H, Hagberg J M, Dalsky G P, Holloszy J O. Muscle triglyceride utilization during exercise: effect of training.  J Appl Physiol. 1986;  60 562-567
  • 32 Insull Jr W, Bartsch G E. Fatty acid composition of human adipose tissue related to age, sex, and race.  Am J Clin Nutr. 1967;  20 13-23
  • 33 Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men.  J Appl Physiol. 1987;  62 999-1005
  • 34 Jeukendrup A E. Regulation of fat metabolism in skeletal muscle.  Ann NY Acad Sci. 2002;  967 217-235
  • 35 Jeukendrup A E. Modulation of carbohydrate and fat utilization by diet, exercise and environment.  Biochem Soc Trans. 2003;  31 1270-1273
  • 36 Jeukendrup A E, Achten J. Fatmax: A new concept to optimize fat oxidation during exercise?.  Eur J Sport Sci. 2001;  1 1-5
  • 37 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: a review. Part I: Fatty acid mobilization and muscle metabolism.  Int J Sports Med. 1998;  19 231-244
  • 38 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: a review. Part II: Regulation of metabolism and the effects of training.  Int J Sports Med. 1998;  20 293-301
  • 39 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: a review. Part III: Effects of nutritional interventions.  Int J Sports Med. 1998;  19 371-379
  • 40 Jungas R L, Halperin M L, Brosnan J T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans.  Physiol Rev. 1992;  72 419-448
  • 41 Kelley D E. Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.  Diabetes Care. 2001;  24 933-941
  • 42 King G A, McLaughlin J E, Howley E T, Bassett Jr D R, Ainsworth B E. Validation of Aerosport KB1-C portable metabolic system.  Int J Sports Med. 1999;  20 304-308
  • 43 Koffranyi E, Michaelis H F. Ein tragbarer Apparat zur Bestimmung des Gasstoffwechsels.  Arbeitsphysiologie. 1940;  11 148-155
  • 44 Koivisto V, Hendler R, Nadel E, Felig P. Influence of physical training on the fuel-hormone response to prolonged low intensity exercise.  Metabolism. 1982;  31 192-197
  • 45 Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy.  Bioch J. 1920;  14 290-363
  • 46 Lavoie C, Ducros F, Bourque J, Langelier H, Chiasson J-L. Glucose metabolism during exercise in man: the role of insulin and glucagon in the regulation of hepatic glucose production and gluconeogensis.  Can J Physiol Pharmacol. 1997;  75 26-35
  • 47 Lemon P W, Mullin J P. Effect of initial muscle glycogen levels on protein catabolism during exercise.  J Appl Physiol. 1980;  48 624-629
  • 48 Lusk G. Animal calorimetry. Analysis of the oxidation of mixtures of carbohydrate and fat.  J Biol Chem. 1924;  59 41-42
  • 49 Lusk G. The Elements of the Science of Nutrition. Philadelphia, London; W. B. Saunders 1928
  • 50 Martin III W H, Dalsky G P, Hurley B F, Matthews D E, Bier D M, Hagberg J M, Rogers M A, King D S, Holloszy J O. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise.  Am J Physiol. 1993;  265 708-714
  • 51 McLaughlin J E, King G A, Howley E T, Bassett Jr D R, Ainsworth B E. Validation of the COSMED K4b2 portable metabolic system.  Int J Sports Med. 2001;  22 280-284
  • 52 Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: An update.  Can J Sport Sci. 1991;  16 23-29
  • 53 Rietjens G J, Kuipers H, Kester A D, Keizer H A. Validation of a computerized metabolic measurement system (Oxycon-Pro) during low and high intensity exercise.  Int J Sports Med. 2001;  22 291-294
  • 54 Romijn J A, Coyle E F, Hibbert J, Wolfe R R. Comparison of indirect calorimetry and a new breath 13 C/12 C method during strenuous exercise.  Am J Physiol. 1992;  263 64-71
  • 55 Romijn J A, Coyle E F, Sidossis L S, Gastaldelli A, Horowitz J F, Endert E, Wolfe R R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity.  Am J Physiol. 1993;  265 380-391
  • 56 Romijn J A, Coyle E F, Sidossis L S, Rosenblatt J, Wolfe R R. Substrate metabolism during different exercise intensities in endurance-trained women.  J Appl Physiol. 2000;  88 1707-1714
  • 57 Rowlands D S, Jeukendrup A E. Fat-Oxidation during Exercise: Comparison of RER vs. 13 C - Glycogen Enrichment Method. Clermont Ferrand; Congress Presentation European College of Sport Science 2004
  • 58 Schulz H, Helle S, Heck H. The validity of the telemetric system CORTEX X1 in the ventilatory and gas exchange measurement during exercise.  Int J Sports Med. 1997;  18 454-457
  • 59 Spriet L L. Regulation of skeletal muscle fat oxidation during exercise in humans.  Med Sci Sports Exerc. 2002;  34 1477-1484
  • 60 Trimmer J K, Schwarz J M, Casazza G A, Horning M A, Rodriguez N, Brooks G A. Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis.  J Appl Physiol. 2002;  93 233-241
  • 61 Van Aggel-Leijssen D P, Saris W H, Hul G B, Van Baak M A. Long-term effects of low-intensity exercise training on fat metabolism in weight-reduced obese men.  Metabolism. 2002;  51 1003-1010
  • 62 van Loon L J, Greenhaff P L, Constantin-Teodosiu D, Saris W H, Wagenmakers A J. The effects of increasing exercise intensity on muscle fuel utilisation in humans.  J Physiol. 2001;  536 295-304
  • 63 Venables M C, Achten J, Jeukendrup A E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study.  J Appl Physiol. 2004;  DOI: 10.1152/japplphysiol.00662.2003
  • 64 Wagenmakers A J. Protein and amino acid metabolism in human muscle.  Adv Exp Med Biol. 1998;  441 307-319
  • 65 Wagenmakers A JM, Beckers E J, Brouns F, Kuipers H, Soeters P B, van der Vusse G J, Saris W HM. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise.  Am J Physiol. 1991;  260 883-890
  • 66 Wagenmakers A JM, Brookes J H, Coakley J H, Reilly T, Edwards R HT. Exercise-induced activation of branched-chain 2-oxo acid dehydrogenase in human muscle.  Eur J Appl Physiol. 1989;  59 159-167
  • 67 Wideman L, Stoudemire N M, Pass K A, McGinnes C L, Gaesser G A, Weltman A. Assessment of the aerosport TEEM 100 portable metabolic measurement system.  Med Sci Sports Exerc. 1996;  28 509-515
  • 68 Wilmore D W. The Metabolic Management of the Critically Ill. New York; Plenum 1977
  • 69 Wilmore J H, Davis J A, Norton A C. An automated system for assessing metabolic and respiratory function during exercise.  J Appl Physiol. 1976;  40 619-624
  • 70 Zuntz N. Über die Rolle des Zuckers im tierischen Stoffwechsel.  Arch Physiol. 1896;  538-577
  • 71 Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba B L, Raz I, Saad M F, Swinburn B A, Knowler W C, Bogardus C, Ravussin E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ.  Am J Physiol. 1990;  259 650-657

A. E. Jeukendrup

School of Sport and Exercise Sciences, University of Birmingham, Edgbaston

B15 2TT Birmingham

United Kingdom

Phone: + 441214144124

Fax: + 44 12 14 14 41 21

Email: a.e.jeukendrup@bham.ac.uk