Int J Sports Med 2005; 26(9): 739-746
DOI: 10.1055/s-2004-830493
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Torque and Power-Velocity Relationships in Cycling: Relevance to Track Sprint Performance in World-Class Cyclists

S. Dorel1 , 2 , C. A. Hautier4 , O. Rambaud1 , D. Rouffet4 , E. Van Praagh3 , J.-R. Lacour1 , M. Bourdin1
  • 1Laboratoire de Biomécanique et de Modélisation Humaine (Equipe Physiologie de l'Exercice) - Faculté de Médecine Lyon-Sud, Oullins cedex, France
  • 2Laboratoire de Physiologie - Unité PPEH, CHU St-Jean-Bonnefonds, Saint-Etienne cedex 2, France
  • 3Laboratoire de Physiologie de l'Exercice (BAPS), Gabriel Montpied Hospital, Clermont-Ferrand cedex 1, France
  • 4Centre de Recherche et d'Innovation sur le Sport (CRIS), Université Claude Bernard - Lyon I, Villeurbanne cedex, France
Further Information

Publication History

Accepted after revision: September 30, 2004

Publication Date:
24 January 2005 (online)

Abstract

The aims of the present study were both to describe anthropometrics and cycling power-velocity characteristics in top-level track sprinters, and to test the hypothesis that these variables would represent interesting predictors of the 200 m track sprint cycling performance. Twelve elite cyclists volunteered to perform a torque-velocity test on a calibrated cycle ergometer, after the measurement of their lean leg volume (LLV) and frontal surface area (Ap), in order to draw torque- and power-velocity relationships, and to evaluate the maximal power (Pmax), and both the optimal pedalling rate (ƒopt) and torque (Topt) at which Pmax is reached. The 200 m performances - i.e. velocity (V200) and pedalling rate (ƒ200) - were measured during international events (REC) and in the 2002 French Track Cycling Championships (NAT). Pmax, ƒopt, and Topt were respectively 1600 ± 116 W, 129.8 ± 4.7 rpm and 118.5 ± 9.8 N · m. Pmax was strongly correlated with Topt (p < 0.001), which was correlated with LLV (p < 0.01). V200 was related to Pmax normalized by Ap (p ≤ 0.05) and also to ƒopt (p < 0.01) for REC and NAT. ƒ200 (155.2 ± 3, REC; 149 ± 4.3, NAT) were significantly higher than ƒopt (p < 0.001). These findings demonstrated that, in this population of world-class track cyclists, the optimization of the ratio between Pmax and Ap represents a key factor of 200 m performance. Concerning the major role also played by ƒopt, it is assumed that, considering high values of ƒ200, sprinters with a high value of optimal pedalling rate (i.e. lower ƒ200 - f opt difference) could be theoretically in better conditions to maximize their power output during the race and hence performance.

References

  • 1 Arsac L M, Belli A, Lacour J R. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.  Eur J Appl Physiol. 1996;  74 100-106
  • 2 Bassett Jr D R, Kyle C R, Passfield L, Broker J P, Burke E R. Comparing cycling world hour records, 1967 - 1996: modeling with empirical data.  Med Sci Sports Exerc. 1999;  31 1665-1676
  • 3 Beelen A, Sargeant A J. Effect of fatigue on maximal power output at different contraction velocities in humans.  J Appl Physiol. 1991;  71 2332-2337
  • 4 Candau R B, Grappe F, Menard M, Barbier B, Millet G Y, Hoffman M D, Belli A R, Rouillon J D. Simplified deceleration method for assessment of resistive forces in cycling.  Med Sci Sports Exerc. 1999;  31 1441-1447
  • 5 Capelli C, Schena F, Zamparo P, Monte A D, Faina M, di Prampero P E. Energetics of best performances in track cycling.  Med Sci Sports Exerc. 1998;  30 614-624
  • 6 Coyle E F, Feltner M E, Kautz S A, Hamilton M T, Montain S J, Baylor A M, Abraham L D, Petrek G W. Physiological and biomechanical factors associated with elite endurance cycling performance.  Med Sci Sports Exerc. 1991;  23 93-107
  • 7 Davies C T, Sandstrom E R. Maximal mechanical power output and capacity of cyclists and young adults.  Eur J Appl Physiol. 1989;  58 838-844
  • 8 de Groot G, Sargeant A, Geysel J. Air friction and rolling resistance during cycling.  Med Sci Sports Exerc. 1995;  27 1090-1095
  • 9 Delecluse C. Influence of strength training on sprint running performance. Current findings and implications for training.  Sports Med. 1997;  24 147-156
  • 10 di Prampero P E, Cortili G, Mognoni P, Saibene F. Equation of motion of a cyclist.  J Appl Physiol. 1979;  47 201-206
  • 11 Dorel S, Bourdin M, Van Praagh E, Lacour J R, Hautier C A. Influence of two pedalling rate conditions on mechanical output and physiological responses during all-out intermittent exercise.  Eur J Appl Physiol. 2003;  89 157-165
  • 12 Driss T, Vandewalle H, Le Chevalier J M, Monod H. Force-velocity relationship on a cycle ergometer and knee-extensor strength indices.  Can J Appl Physiol. 2002;  27 250-262
  • 13 Durnin J V, Rahaman M M. The assessment of the amount of fat in the human body from measurements of skinfold thickness.  Br J Nutr. 1967;  21 681-689
  • 14 Falgairette G, Billaut F, Giacomoni M, Ramdani S, Boyadjian A. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.  Int J Sports Med. 2004;  25 235-240
  • 15 Francescato M P, Girardis M, di Prampero P E. Oxygen cost of internal work during cycling.  Eur J Appl Physiol. 1995;  72 51-57
  • 16 Hautier C A, Linossier M T, Belli A, Lacour J R, Arsac L M. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition.  Eur J Appl Physiol. 1996;  74 114-118
  • 17 Heil D P. Body mass scaling of frontal area in competitive cyclists not using aero-handlebars.  Eur J Appl Physiol. 2002;  87 520-528
  • 18 Hintzy F, Belli A, Grappe F, Rouillon J D. Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans.  Eur J Appl Physiol. 1999;  79 426-432
  • 19 Jaskolska A, Goossens P, Veenstra B, Jaskolski A, Skinner J S. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.  Int J Sports Med. 1999;  20 192-197
  • 20 Jeukendrup A E, Craig N P, Hawley J A. The bioenergetics of World Class Cycling.  J Sci Med Sport. 2000;  3 414-433
  • 21 Jeukendrup A E, Martin J. Improving cycling performance: how should we spend our time and money.  Sports Med. 2001;  31 559-569
  • 22 Jones P R, Pearson J. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults.  J Physiol. 1969;  204 63-66
  • 23 Lakomy H K. Measurement of work and power output using friction-loaded cycle ergometers.  Ergonomics. 1986;  29 509-517
  • 24 Lucia A, Hoyos J, Chicharro J L. Physiology of professional road cycling.  Sports Med. 2001;  31 325-337
  • 25 MacIntosh B R, Neptune R R, Horton J F. Cadence, power, and muscle activation in cycle ergometry.  Med Sci Sports Exerc. 2000;  32 1281-1287
  • 26 Martin J C, Milliken D L, Cobb J E, MacFadden K L, Coggan A R. Validation of a mathematical model for road cycling power.  J Appl Biomech. 1998;  14 276-291
  • 27 Martin J C, Spirduso W W. Determinants of maximal cycling power: crank length, pedalling rate and pedal speed.  Eur J Appl Physiol. 2001;  84 413-418
  • 28 Martin J C, Wagner B M, Coyle E F. Inertial-load method determines maximal cycling power in a single exercise bout.  Med Sci Sports Exerc. 1997;  29 1505-1512
  • 29 McCartney N, Heigenhauser G J, Jones N L. Power output and fatigue of human muscle in maximal cycling exercise.  J Appl Physiol. 1983;  55 218-224
  • 30 McDaniel J, Durstine J L, Hand G A, Martin J C. Determinants of metabolic cost during submaximal cycling.  J Appl Physiol. 2002;  93 823-828
  • 31 McLean B D, Parker A W. An anthropometric analysis of elite Australian track cyclists.  J Sports Sci. 1989;  7 247-255
  • 32 Morin J B, Belli A. A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer.  J Biomech. 2004;  37 141-145
  • 33 Morin J-B, Hintzy F, Belli A, Grappe F. Force-velocity relationships and sprint running performances in trained athletes.  Sci Sports. 2002;  17 78-85
  • 34 Neptune R R, Herzog W. The association between negative muscle work and pedalling rate.  J Biomech. 1999;  32 1021-1026
  • 35 Olds T S, Norton K I, Craig N P. Mathematical model of cycling performance.  J Appl Physiol. 1993;  75 730-737
  • 36 Olds T S, Norton K I, Lowe E L, Olive S, Reay F, Ly S. Modeling road-cycling performance.  J Appl Physiol. 1995;  78 1596-1611
  • 37 Padilla S, Mujika I, Angulo F, Goiriena J J. Scientific approach to the 1-h cycling world record: a case study.  J Appl Physiol. 2000;  89 1522-1527
  • 38 Sargeant A J. Neuromuscular determinants of human performance. Whipp BJ, Sargeant AJ Physiological Determinants of Exercise Tolerance in Humans. London; Portland Press Ltd 1999: 13-28
  • 39 Sargeant A J, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise.  J Appl Physiol. 1981;  51 1175-1182
  • 40 Schumacher Y O, Mueller P, Keul J. Development of peak performance in track cycling.  J Sports Med Phys Fitness. 2001;  41 139-146
  • 41 Seck D, Vandewalle H, Decrops N, Monod H. Maximal power and torque-velocity relationship on a cycle ergometer during the acceleration phase of a single all-out exercise.  Eur J Appl Physiol. 1995;  70 161-168
  • 42 Staron R S, Karapondo D L, Kraemer W J, Fry A C, Gordon S E, Falkel J E, Hagerman F C, Hikida R S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women.  J Appl Physiol. 1994;  76 1247-1255
  • 43 van Soest O, Casius L J. Which factors determine the optimal pedalling rate in sprint cycling?.  Med Sci Sports Exerc. 2000;  32 1927-1934
  • 44 Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump.  Eur J Appl Physiol. 1987;  56 650-656
  • 45 Wilber R L, Zawadzki K M, Kearney J T, Shannon M P, Disalvo D. Physiological profiles of elite off-road and road cyclists.  Med Sci Sports Exerc. 1997;  29 1090-1094

S. Dorel

Laboratoire de Biomécanique et de Modélisation Humaine (Equipe Physiologie de l'Exercise) - Faculté de Médecine Lyon-Sud

BP 12

69921 Oullins cedex

France

Phone: + 33478863135

Fax: + 33 4 78 86 31 35

Email: Dorel77@wanadoo.fr

Email: Sylvain.Dorel@univ-lyon1.fr