Int J Sports Med 2005; 26(8): 632-637
DOI: 10.1055/s-2004-830380
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Sweat Lactate, Ammonia, and Urea in Rugby Players

I. Alvear-Ordenes1 , D. García-López1 , J. A. De Paz1 , J. González-Gallego1
  • 1Department of Physiology, University of León, Campus Universitario, León, Spain
Further Information

Publication History

Accepted after revision: August 20, 2004

Publication Date:
22 February 2005 (online)

Abstract

The purpose of this study was to investigate sweat lactate, ammonia, and urea excretion in rugby players. Fifteen elite amateur rugby players volunteered to participate. The study was conducted during competitive matches in the official season. Plasma and sweat concentrations of lactate, ammonia, and urea were measured before and after the matches. Peak values for creatine kinase activity were observed 24 h after the match. There was no significant change between time points for blood lactate concentration but secretion rate per unit surface and time was significantly reduced after the match. Sweat ammonia concentration increased significantly during the match; values were significantly reduced after 24 h and still remained low at 72 h. Secretion rate was also reduced from 24 h. Urea concentration was significantly reduced at 48 h, while secretion rates decreased at 24 h and 48 h. Lactate in blood was significantly elevated during the match but not thereafter. Blood ammonia was significantly elevated during the match and did not differ from the resting values at 24 or 48 h. Urea in blood tended to decrease during the match, with a significant reduction at 24 h. Significant positive correlations were observed between blood and sweat concentrations for urea and ammonia but not for lactate. Sweat rate correlated positively with sweat lactate secretion. The fact that part of the ammonia formed during exercise is lost with sweat indicates the importance of the purine nucleotide cycle during rugby matches. Our data also confirm that sweat lactate concentration is not influenced by circulatory blood lactate in rugby players.

References

  • 1 Ament W, Huizenga R, Mook G A, Glips C H, Verkerke G J. Lactate and ammonia concentration in blood and sweat during incremental cycle ergometer exercise.  Int J Sports Med. 1997;  18 35-39
  • 2 Anderson G S, Rhodes E C. A review of blood lactate and ventilatory methods of detecting transition thresholds.  Sports Med. 1989;  8 45-54
  • 3 Bouckaert J, Pannier J L. Blood ammonia response to treadmill and bicycle exercise in man.  Int J Sports Med. 1995;  16 141-144
  • 4 Brodan V, Kuhn E, Pechar J, Tomkova D. Changes of free amino acids in plasma of healthy subjects induced by physical exercise.  Eur J Appl Physiol. 1976;  9 69-77
  • 5 Calles-Escandon J, Cunninham J J, Synder P, Jacob R, Huszar G, Loke J, Felif P. Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal subjects.  Am J Physiol. 1984;  246 334-338
  • 6 Colombani P, Spati S, Spleiss C, Frey-Rindova P, Wenk C. Exercise-induced sweat nitrogen excretion: evaluation of a regional collection method using gauze pads.  Z Ernährungswiss. 1997;  36 237-243
  • 7 Coutts A, Reaburn P, Abt G. Heart rate, blood lactate concentration and estimated energy expenditure in a semi-professional rugby league team during a match: a case study.  J Sports Sci. 2003;  21 97-103
  • 8 Czarnowski D, Gorski J. Sweat ammonia excretion during submaximal cycling exercise.  J Appl Physiol. 1991;  70 371-374
  • 9 Czarnowski D, Gorski J, Jozwiuk J, Boron-Kacmarska A. Plasma ammonia is the principal source of ammonia in sweat.  Eur J Appl Physiol. 1992;  65 135-137
  • 10 Czarnowski D, Langfort J, Pilis W, Gorski J. Effect of a low carbohydrate dieta on plasma and sweat ammonia concentrations during prolonged nonexhausting exercise.  Eur J Appl Physiol. 1995;  70 70-74
  • 11 Deutsch M U, Maw G J, Jenkins D, Reaburn P. Heart rate, blood lactate and kinematic data of elite colts (under - 19) rugby union players during competition.  J Sports Sci. 1998;  16 561-570
  • 12 Dubois D, Dubois E F. A formula to estimate the approximate surface area if height and weight be known.  Arch Environ Med. 1916;  17 863-871
  • 13 Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union.  Sports Med. 2003;  33 973-991
  • 14 Falk B, Bar-Or O, MacDougall J D, McGillis L, Calvert R, Meyer F. Sweat lactate in exercising children and adolescents of varying physical maturity.  J Appl Physiol. 1981;  71 1735-1740
  • 15 Garry J P, McShane J M. Postcompetition elevation of muscle enzyme levels in professional football players.  Med Gen Med. 2000;  2 4
  • 16 Gorski J, Lerczak K, Wojcieszak I. Urea excretion in sweat during short-term efforts of high intensity.  Eur J Appl Physiol. 1985;  54 416-419
  • 17 Green J M, Bishop P A, Muir I H, McLester Jr J R, Heath H E. Effect of high and low blood lactate concentrations on sweat lactate response.  Int J Sports Med. 2000;  21 556-560
  • 18 Green J M, Bishop P A, Muir I H, Lomax R G. Gender differences in sweat lactate.  Eur J Appl Physiol. 2000;  82 230-235
  • 19 Hoffman J R, Maresh C M, Newton R U, Rubin M R, French D N, Volek J S, Sutherland J, Robertson M, Gomez A L, Ratamess N A, Kang J, Kraemer W J. Performance, biochemical, and endocrine changes during a competitive football game.  Med Sci Sports Exerc. 2002;  34 1845-1853
  • 20 Huang C T, Chen M L, Huang L L, Mao I F. Uric acid and urea in human sweat.  Chin J Physiol. 2002;  45 109-115
  • 21 Jackson A S, Pollock M L. Practical assessment of body composition.  Phys Sports Med. 1985;  13 76-90
  • 22 Lamont L. Sweat lactate secretion during exercise in relation to women's aerobic capacity.  J Appl Physiol. 1987;  62 194-198
  • 23 Lemon P W, Deutsch D T, Payne W R. Urea production during prolonged swimming.  J Sports Sci. 1989;  7 241-246
  • 24 Lemon P W, Nagle F J. Effects of exercise on protein and amino acid metabolism.  Med Sci Sports Exerc. 1981;  13 141-149
  • 25 McLean D A. Analysis of the physical demands of international rugby union.  J Sport Sci. 1992;  10 285-296
  • 26 Mutch B JC, Banister E W. Ammonia metabolism in exercise and fatigue: a review.  Med Sci Sports Exerc. 1983;  15 41-50
  • 27 Nielsen H B, Clemmensen J O, Skak C, Secher N H. Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans.  J Appl Physiol. 2002;  92 1677-1683
  • 28 Nielsen H B. Lymphocyte responses to maximal exercise: a physiological perspective.  Sports Med. 2003;  33 853-867
  • 29 Pages T, Murtra B, Ibañez J, Rama R, Callis A, Palacios L. Changes in blood ammonia and lactate levels during a triathlon race.  J Sports Med. 1994;  34 351-356
  • 30 Pincivero D M, Bompa T O. A physiological review of American football.  Sports Med. 1998;  23 247-260
  • 31 Pohl A P, O'Halloran M W, Pannall P R. Biochemical and physiological changes in football players.  Med J Aust. 1981;  1 467-470
  • 32 Quinton P M. Sweating and its disorders.  Ann Rev Med. 1983;  34 429-452
  • 33 Sato K. The physiology, pharmacology and biochemistry of the eccrine sweat gland.  Rev Physiol Biochem Pharmacol. 1977;  79 51-131
  • 34 Shirreffs S M, Maughan R J. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content.  J Appl Physiol. 1997;  82 336-341
  • 35 Stabenau J R, Warren K S, Rall D P. The role of pH gradient in the distribution of ammonia between blood and cerebrospinal fluid, brain and muscle.  J Clin Invest. 1959;  38 373-383
  • 36 Takarada Y. Evaluation of muscle damage after a rugby match with special reference to tackle players.  Br J Sports Med. 2003;  37 416-419
  • 37 Von Duvillard S P. Exercise lactate levels: simulation and reality of aerobic and anaerobic metabolism.  Eur J Appl Physiol. 2001;  86 3-5

J. González-Gallego

Department of Physiology · University of León

Campus Universitario

24071 León

Spain

Phone: + 34987291258

Fax: + 34 9 87 29 12 67

Email: dfijgg@unileon.es