Subscribe to RSS
DOI: 10.1055/s-2004-829538
An Efficient Synthesis of Trihydroxy Quinolizidine Alkaloids Using Ring-Closing Metathesis
Publication History
Publication Date:
01 July 2004 (online)
Abstract
The sequential C- and N-allylation of d-glucose-derived nitrone 2 provides the required diene functionality with nitrogen linker that was used in ring-closing metathesis pathway in the synthesis of quinolizidine alkaloids 1a and 1b.
Key words
alkaloids - azasugars - carbohydrates - glycosidase - metathesis
- For recent reviews, see:
-
1a
Schuster M.Blechert S. Angew. Chem., Int. Ed. Engl. 1997, 36: 2036 ; Angew. Chem. 1997, 109, 2124 -
1b
Fürstner A. Top. Organomet. Chem. 1998, 1: 37 -
1c
Armstrong S. J. Chem. Soc., Perkin Trans. 1 1998, 317 -
1d
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
1e
Phillips AJ.Abell AD. Aldrichimica Acta 1999, 32: 75 -
1f
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 ; Angew. Chem. 2000, 112, 3140 -
1g
Larry Y. Chem. Rev. 2000, 100: 2963 - For the application of the ring-closing metathesis reaction to the synthesis of aza-sugars, see:
-
2a
Huwe CM.Blechert S. Tetrahedron Lett. 1995, 36: 1621 -
2b
Overkleeft HS.Pandit UK. Tetrahedron Lett. 1996, 37: 547 -
2c
Huwe CM.Blechert S. Synthesis 1997, 61 -
2d
White JD.Hrnciar P.Yokochi AFT. J. Am. Chem. Soc. 1998, 120: 7359 -
2e
Overkleeft HS.Bruggeman P.Pandit UK. Tetrahedron Lett. 1998, 39: 3869 -
2f
Lindstrom UM.Somfai P. Tetrahedron Lett. 1998, 39: 7173 -
2g
Ovaa H.Stragies R.van der Marel GA.van Boom JH.Blechert S. Chem. Commun. 2000, 1501 -
2h
Voigtmann U.Blechert S. Org. Lett. 2000, 2: 3971 -
2i
Subramanian T.Lin C.-C. Tetrahedron Lett. 2001, 42: 4079 -
2j
Klitze CF.Pilli RA. Tetrahedron Lett. 2001, 42: 5605 -
2k
Chandra KL.Chandrasekhar M.Singh VK. J. Org. Chem. 2002, 67: 4630 -
2l
Lindsay KB.Pyne SG. J. Org. Chem. 2002, 67: 7774 -
2m
Buschmann N.Rückert A.Blechert S. J. Org. Chem. 2002, 67: 4325 -
2n
Lee HK.Chun JS.Pak CS. J. Org. Chem. 2003, 68: 2471 -
2o
Verhelst SHL.Martinez BP.Timmer SM.Lodder G.Van der Marel GA.Overkleeft HS.van Boom JH. J. Org. Chem. 2003, 68: 9598 -
3a
Grandnig G.Berger A.Grassberger V.Stuetz A. Tetrahedron Lett. 1991, 32: 4849 -
3b
Rassu G.Casiraghi G.Pinna L.Spanu P.Ulgheri F.Cornia M.Zanardi F. Tetrahedron 1993, 49: 6627 -
3c
Herzegh P.Kovacs I.Szilagyi L.Sztaricskai F.Bericibar A.Riche C.Chiaroni A.Olesker A.Lukacs G. Tetrahedron 1995, 51: 2969 -
3d
Carretero JC.Arrayas RG.De Garcia IS. Tetrahedron Lett. 1997, 38: 8537 -
3e
Iminosugars as Glycosidase Inhibitors
Stuetz AE. Wiley-VCH; Weinheim: 1999. -
3f
Schaller C.Vogel P. Synlett 1999, 1219 -
4a
Michael J. Nat. Prod. Rep. 1999, 16: 675 -
4b
Michael J. Nat. Prod. Rep. 2000, 17: 579 -
4c
Michael J. Nat. Prod. Rep. 2003, 20: 458 -
5a
Dhavale D.Desai V.Sindkhedkar M.Mali R.Castellari C.Trombini C. Tetrahedron: Asymmetry 1997, 1475 -
5b
Dhavale D.Saha N.Desai V. J. Org. Chem. 1997, 62: 7482 -
5c
Dhavale D.Saha N.Desai V. J. Org. Chem. 1999, 64: 1715 -
5d
Dhavale D.Saha N.Desai V. J. Chem. Soc., Chem. Commun. 1999, 1719 -
5e
Saha N.Desai V.Dhavale D. Tetrahedron 2001, 39 -
5f
Patil N.Tilekar J.Dhavale D. J. Org. Chem. 2001, 66: 1065 -
5g
Patil N.Tilekar J.Dhavale D. Tetrahedron Lett. 2001, 42: 747 -
5h
Dhavale D.Patil N.John S.Sabharwal S. Bioorg. Med. Chem. 2002, 10: 2155 -
5i
Dhavale D.Saha N.Desai V.Tilekar J. Arkivoc 2002, 91 -
5j
Patil N.Tilekar J.Jadhav H.Dhavale D. Tetrahedron 2003, 59: 1873 -
6a
Liu P.Rogers R.Kang M.Sankara P. Tetrahedron Lett. 1991, 32: 5853 -
6b
Pearson W.Hembre E. Tetrahedron Lett. 1993, 8221 -
6c
Herczegh P.Kovacs I.Szilagyi L.Sztaricskai F. Tetrahedron 1995, 51: 2969 -
6d
Carretero J.Arrayas R.Gracia I. Tetrahedron Lett. 1997, 38: 8537 -
6e
Pearson W.Hembre E. J. Org. Chem. 1996, 61: 5537 -
6f
Hamana H.Ikota N.Ganem B. J. Org. Chem. 1987, 52: 5492 -
6g
Pandit UK.Overkleeft H.Borer BC.Bieraugel H. Eur. J. Org. Chem. 1999, 959 -
6h
Schaller C.Vogel P. Helv. Chim. Acta 2000, 193 -
6i
Gebarowski P.Sas W. Chem. Commun. 2001, 915 -
7a
It is known that for a given C5-epimeric pair, derived from the d-gluco-furanose, the J 4,5 in the l-ido isomer (threo-relationship) is consistently larger than that of the corresponding d-gluco isomer (erythro-relationship). In addition, the chemical shift of H-3 in l-ido isomer is upfield as compared to d-gluco isomer. The higher value of J 4,5 observed in the diastereomer 3b (9.5 Hz) as compared to 3a (8.3 Hz) indicated the l-ido configuration for 3b and the d-gluco configuration for 3a. This fact was further supported by comparison of the chemical shift of H-3 in both the isomers. In 3b H-3 appeared upfield at δ = 3.84 ppm as compared to 3a at δ = 4.01 ppm, further supporting the d-gluco- and l-ido configuration at C5 to 3a and 3b, respectively. Thus, the absolute configurations at C-5 in 3a and 3b were assigned as (5R) and (5S), respectively.
-
7b See:
Cornia M.Casiraghi G. Tetrahedron 1989, 45: 2869
References
General Procedure for the Ring-Closing Metathesis: To a solution of 5a,b (0.180 g, 0.4 mmol) in dry benzene (15 mL) at 25 °C was added benzylidene-bis-tricyclohexyl-phosphine-dichlororuthenium (0.006 g, 5% mol) and the reaction mixture was refluxed under nitrogen for 18 h. Removal of solvent under vacuum afforded a thick oil that on purification by column chromatography using EtOAc-n-hexane (5:95) afforded corresponding Δ3-piperidine 6a,b.
General Procedure for the Reductive Aminocyclization: A solution of 7a,7b (0.100 g, 0.26 mmol) in TFA-H2O (3:2, 2 mL) was stirred at 25 °C for 2 h. TFA was co-evaporated with benzene to furnish a thick liquid, which was directly used in the next reaction. To a solution of the above product in MeOH (5 mL) was added 10% Pd/C (0.01 g) and the solution was hydrogenated at 80 psi for 16 h. The solution was filtered through celite and the filtrate concentrated to get a sticky solid, which was purified by column chromatography (MeOH-CHCl3 = 5:95) to give 1a,b.
All new compounds have been characterized by 1H NMR, 13C NMR, and elemental analysis. Selected procedures and data for 3-
O
-benzyl-1,2-
O
-isopropylidene-5,6,7,8-tetra-deoxy-5-(
N
-benzyl-
N
-hydroxyamino)-α-
d
-
gluco
-7-eno-octo-1,4-furanose (
3a): thick liquid; 80%; Rf = 0.52 (EtOAc-hexane = 3:7); [α]D = -30.0 (c 2.40, CHCl3). IR (neat): 3510-3160 (br), 1639 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.26 (s, 3 H), 1.44 (s, 3 H), 2.49-2.69 (m, 2 H), 3.41 (ddd, J = 8.3, 7.8, 4.8 Hz, 1 H), 3.76 (d, J = 13.6 Hz, 1 H), 3.94 (d, J = 13.6 Hz, 1 H), 4.01 (d, J = 3.0 Hz, 1 H), 4.37 (dd, J = 8.3, 3.0 Hz, 1 H), 4.40-4.45 (br s, exchanges with D2O, 1 H), 4.50 (d, J = 11.7 Hz, 1 H), 4.54 (d, J = 3.9 Hz, 1 H), 4.63 (d, J = 11.7 Hz, 1 H), 4.98 (dd, J = 11.1, 1.6 Hz, 1 H), 5.10 (dd, J = 17.0, 1.6 Hz, 1 H), 5.87 (d, J = 3.9 Hz, 1 H), 5.92-6.10 (m, 1 H), 7.12-7.28 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 26.2, 26.7, 31.4, 60.8, 63.4, 72.0, 79.6, 81.9, 82.5, 104.5, 111.3, 115.6, 127.1, 127.5, 127.6, 128.2, 128.4, 129.1, 137.6, 137.7, 138.3. Anal. Calcd for C25H31NO5: C, 70.57; H, 7.34. Found: C, 70.51; H, 7.30.
3-
O
-Benzyl-1,2-
O
-isopropylidene-5,6,7,8-tetra-deoxy-5-(
N
-benzyl-
N
-hydroxyamino)-β-
l
-
ido
-7-eno-octo-1,4-furanose (
3b): thick liquid; 13%; Rf = 0.44 (EtOAc-hexane = 3:7); [α]D = -48.0 (c 0.25, CHCl3). IR (neat): 3530-3150 (br), 1639 cm-1. 1H NMR (300 MHz, CDCl3):
δ = 1.27 (s, 3 H), 1.46 (s, 3 H), 1.91-2.09 (m, 1 H), 2.21-2.35 (m, 1 H), 3.38 (ddd, J = 9.5, 8.1, 4.3 Hz, 1 H), 3.84 (d, J = 3.0 Hz, 1 H), 3.92 (d, J = 13.9 Hz, 1 H), 4.09 (d, J = 13.9 Hz, 1 H), 4.39 (d, J = 11.6 Hz, 1 H), 4.44 (dd, J = 9.5, 3.0 Hz, 1 H), 4.57 (d, J = 3.8 Hz, 1 H), 4.61 (d, J = 11.6 Hz, 1 H), 4.84-4.92 (m, 2 H), 4.93-4.96 (br s, exchanges with D2O, 1 H), 5.83-6.05 (m, 1 H), 5.93 (d, J = 3.8 Hz, 1 H), 7.10-7.38 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 26.5, 26.8, 34.3, 49.4, 57.3, 72.0, 81.3, 81.9, 83.5, 104.9, 111.3, 115.0, 126.2, 127.4, 127.5, 127.7, 128.2, 128.4, 137.9, 138.2, 141.5. Anal. Calcd for C25H31NO5: C, 70.57; H, 7.34. Found: C, 70.29; H, 7.59.
3-
O
-Benzyl-5,6-dideoxy-1,2-
O
-isopropylidene-5-(
N
-benzyl-
N
-propenylamino)-α-
d
-
gluco
-7-eno-octo-1,4-furanose (
5a): thick liquid; 71%; Rf = 0.65 (EtOAc-hex-ane = 2:8); [α]D = -36.4 (c 0.44, CHCl3). IR (neat): 1639, 1605 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.30 (s, 3 H), 1.46 (s, 3 H), 2.48 (br t, J = 7.2 Hz, 2 H), 3.12 (dd, J = 14.1, 6.6 Hz, 1 H), 3.22 (dd, J = 14.1, 6.3 Hz, 1 H), 3.34 (q, J = 7.2 Hz, 1 H), 3.73 (ABq, J = 14.4 Hz, 2 H), 3.95 (d, J = 3.0 Hz, 1 H), 4.22 (dd, J = 7.2, 3.0 Hz, 1 H), 4.48 (d, J = 11.7 Hz,
1 H), 4.53 (d, J = 3.6 Hz, 1 H), 4.63 (d, J = 11.7 Hz, 1 H), 4.87-5.18 (m, 4 H), 5.63-5.80 (m, 1 H), 5.89 (d, J = 3.6 Hz, 1 H), 5.92-6.08 (m, 1 H), 7.16-7.22 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 26.2, 26.8, 32.9, 54.5, 54.7, 57.3, 71.8, 79.9, 81.6, 82.7, 104.7, 111.4, 115.4, 116.6, 126.7, 127.6, 127.7, 128.1, 128.3, 128.5, 137.2, 137.6, 138.3, 140.5. Anal. Calcd for C28H35NO4: C, 74.80; H, 7.85. Found: C, 74.65; H, 7.70.
3-
O
-Benzyl-5,6-dideoxy-1,2-
O
-isopropylidene-5-(
N
-benzyl-
N
-propenylamino)-β-
l
-
ido
-7-eno-octo-1,4-furanose (
5b): thick liquid; 71%; Rf = 0.53 (EtOAc-hexane = 2:8). [α]D = -38.2 (c 0.33, CHCl3). IR (neat): 1641, 1601 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.41 (s, 3 H), 1.59 (s, 3 H), 1.80-1.93 (m, 1 H), 2.11-2.23 (m, 1 H), 3.30-3.47 (m, 3 H), 3.81 (d, J = 3.0 Hz, 1 H), 3.83 (d, J = 14.1 Hz, 1 H), 3.94 (d, J = 14.1 Hz, 1 H), 4.30 (dd, J = 9.6, 3.0 Hz, 1 H), 4.45 (d, J = 11.7 Hz, 1 H), 4.64 (d, J = 3.9 Hz, 1 H), 4.70 (d, J = 11.7 Hz, 1 H), 4.90-5.24 (m, 4 H), 5.79-5.96 (m, 2 H), 6.02 (d, J = 3.9 Hz, 1 H), 7.20-7.46 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 26.2, 26.8, 34.5, 53.3, 54.9, 56.8, 71.3, 81.1, 81.9, 82.4, 104.8, 111.2, 115.1, 115.9, 126.3, 127.5, 127.8, 127.9, 128.4, 128.9, 137.2, 137.3, 138.3, 141.3. Anal. Calcd for C28H35NO4: C, 74.80; H, 7.85. Found: C, 74.75; H, 7.66.
1,2-
O
-Isopropylidine-5,6,7,8,9-penta-deoxy-5,9-(
N
-benzyl-imino)-α-
d
-
gluco
-7-eno-nona-1,4-furanose (
6a): thick liquid; 81%; Rf = 0.50 (EtOAc-hexane = 2:8); [α]D = -21.8 (c 0.55, CHCl3). IR (neat): 1640, 1605 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.34 (s, 3 H), 1.46 (s, 3 H), 2.32-2.48 (m, 2 H), 3.10-3.20 (m, 2 H), 3.51 (dt, J = 9.3, 5.7 Hz, 1 H), 3.70 (d, J = 13.8 Hz, 1 H), 3.85 (d, J = 13.8 Hz, 1 H), 4.11 (d, J = 2.7 Hz, 1 H), 4.35 (dd, J = 9.3, 2.7 Hz, 1 H), 4.62 (d, J = 3.9 Hz, 1 H), 4.75 (ABq, J = 11.7 Hz, 2 H), 5.56-5.64 (m, 1 H), 5.87-5.92 (m, 1 H), 5.95 (d, J = 3.9 Hz, 1 H), 7.20-7.38 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 22.4, 26.2, 26.8, 47.2, 54.1, 55.3, 72.4, 79.6, 81.8, 82.4, 104.5, 111.4, 124.0, 125.3, 126.7, 127.6, 127.7, 128.2, 128.4, 128.5, 137.9, 139.9. Anal. Calcd for C26H31NO4: C, 74.08; H, 7.41. Found: C, 73.99; H, 7.46.
1,2-
O
-Isopropylidine-5,6,7,8,9-penta-deoxy-5,9-(
N
-benzyl-imino)-β-
l
-
ido
-7-eno-nona-1,4-furanose (
6b): thick liquid; 78%; Rf = 0.46 (EtOAc-hexane = 2:8); [α]D = -19.4 (c 0.22, CHCl3). IR (neat): 1650, 1603 cm-1.
1H NMR (300 MHz, CDCl3): δ = 1.37 (s, 3 H), 1.52 (s, 3 H), 1.72-1.79 (m, 1 H), 2.29-2.43 (m, 1 H), 3.10-3.28 (m, 2 H), 3.53 (ddd, J = 9.6, 5.8, 3.8 Hz, 1 H), 3.82 (d, J = 3.0 Hz, 1 H), 3.87 (d, J = 13.8 Hz, 1 H), 4.01 (d, J = 13.8 Hz, 1 H), 4.46 (d, J = 11.7 Hz, 1 H), 4.54 (dd, J = 9.6, 3.0 Hz, 1 H), 4.64 (d, J = 3.9 Hz, 1 H), 4.73 (d, J = 11.7 Hz, 1 H), 5.60-5.74 (m, 2 H), 6.05 (d, J = 3.9 Hz, 1 H), 7.19-7.45 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 26.3, 26.7, 26.8, 47.0, 54.4, 58.3, 71.5, 78.4, 81.1, 82.6, 105.1, 111.3, 123.6, 125.7, 126.5, 127.7, 127.9, 128.1, 128.4, 128.8, 137.2, 140.5. Anal. Calcd for C26H31NO4: C, 74.08; H, 7.41. Found: C, 74.15; H, 7.32.
(1
R
,2
R
,3
S
,9a
R
)-octahydro-2
H
-quinolizine-1,2,3-triol (
1a): thick liquid; 85%; Rf = 0.29 (CHCl3-MeOH = 7:3); [α]D = -36.0 (c 0.2, MeOH). IR (neat): 3676-3250 cm-1.
1H NMR (300 MHz, D2O): δ = 1.24-1.53 (m, 2 H), 1.55-1.72 (m, 1 H), 1.79-1.98 (m, 3 H), 2.26 (br d, J = 13.2 Hz, 1 H), 2.60-2.86 (m, 3 H), 3.22-3.36 (m, 2 H), 3.41 (t, J = 9.3 Hz, 1 H), 3.69 (dt, J = 9.3, 4.5 Hz, 1 H). 13C NMR (75 MHz, D2O): δ = 21.6, 23.4, 26.9, 55.3, 56.8, 65.0, 67.0, 72.7, 76.5. Anal. Calcd for C9H17NO3·3H2O: C, 57.73; H, 9.15. Found: C, 57.61; H, 9.01.
(1
R
,2
R
,3
S
,9a
S
)-octahydro-2
H
-quinolizine-1,2,3-triol (
1b): The reaction of 7b (0.13 g, 0.34 mmol) with TFA-H2O (3 mL, 3:2) followed by hydrogenation with 10% Pd/C (0.02 g) as reported for 1a. Column chromatography (MeOH-CHCl3 = 10:90) afforded 1b as a thick liquid (0.058 g, 91%); Rf = 0.25 (CHCl3-MeOH = 7:3); [α]D = -80.0 (c 0.1, MeOH). IR (neat): 3640-3180 cm-1. 1H NMR (300 MHz, D2O): δ = 1.42-1.80 (m, 6 H), 2.79-2.91 (m, 1 H), 3.15-3.38 (m, 4 H), 3.65 (br s, J
H = 6 Hz, 1 H), 3.87 (br s, J
H = 6 Hz, 2 H). 13C NMR (75 MHz, D2O): δ = 21.7, 22.9, 25.7, 55.7, 61.6, 66.4, 67.2, 70.2 (strong). Anal. Calcd for C9H17NO3·2H2O: C, 57.73; H, 9.15. Found: C, 57.58; H, 8.97.