Subscribe to RSS
DOI: 10.1055/s-2004-829073
Alkoxyamines by Reaction of 2,2,6,6-Tetramethylpiperidine-1-oxoammonium Tetrafluoroborate with Enolates
Publication History
Publication Date:
29 June 2004 (online)
Abstract
Alkoxyamines are prepared from the oxoammonium salt of TEMPO and enolates in one step and metal free in 47-89% yield. One of these alkoxyamines (6b) was used to polymerize styrene with a polydispersity index (PDI) = 1.42 (125 °C) and 1.49 (105 °C).
Key words
alkoxyamines - radical reaction - polymerization - alkylation - oxoammonium salt
- 1
Hawker CJ.Bosmann AW.Harth E. Chem. Rev. 2001, 101: 3661 - 2
Benoit D.Grimaldi S.Robin S.Finet JP.Tordo P.Gnanou Y. J. Am. Chem. Soc. 2000, 122: 5929 - 3
Benoit D.Chaplinski V.Braslau R.Hawker CJ. J. Am. Chem. Soc. 1999, 121: 3904 - 4
Braslau R.Burrill LC.Siano M.Naik N.Howden RK.Mahal LK. Macromolecules 1997, 30: 6445 - 5
Braslau R.Burrill LC.Mahal LK.Wedekind T. Angew. Chem., Int. Ed. Engl. 1997, 36: 237 - 6
Jahn U. J. Org. Chem. 1998, 63: 7130 - 7
Matyjaszewski K.Gaynor S.Greszta D.Mardare D.Shigemoto T. Macromol. Symp. 1995, 98: 73 - 8
Hammouch SO.Catala JM. Macromol. Rapid Commun. 1996, 17: 149 - 9
Bergbreiter DE.Walchuk B. Macromolecules 1998, 31: 6380 - 10
Dao J.Benoit D.Hawker CJ. J. Polym. Sci., Part A: Polym. Chem. 1998, 36: 2161 -
11a
Merbouh N.Bobbitt JM.Brückner C. Tetrahedron Lett. 2001, 42: 8793 -
11b
de Noy AEJ.Besemer AC.van Bekkum H. Synthesis 1996, 1153 -
11c
Schnatbaum K.Schäfer HJ. Synthesis 1999, 864 -
11d
Schämann M.Schäfer HJ. Eur. J. Org. Chem. 2003, 351 - 12
Takata T.Tsujino Y.Nakanishi S.Nakamura K.Yoshida E.Endo T. Chem. Lett. 1999, 937 - 13
Kobatake S.Harwood HJ.Quirk RP.Priddy DB. J. Polym. Sci., Part A: Polym. Chem. 1998, 36: 2555 - 14
Hunter DH.Barton DHR.Motherwell WJ. Tetrahedron Lett. 1984, 25: 603 - 15
Golubev VA.Miklyush RV.Rozantsev ZG. Izvest. Akadem. Nauk SSR, Ser. Khim. 1972, 656 ; Chem. Abstr. 1972, 77, 101344 - 16
Yoshida E.Ishizone T.Hirao A.Nakahama S.Takata T.Endo T. Macromolecules 1994, 27: 3119 - 17
Sheinkman AK.Chmilenko TS.Vdovkina GG. Zhurnal Organicheskoi Khimii 1983, 19: 2218 ; J. Org. Chem. USSR 1983, 19, 1933 - 18
Bobbitt JM.Guttermuth CFM.Ma Z.Tang H. Heterocycles 1990, 30: 1131 -
21a
Howell BA.Priddy BC.Li IQ.Smith PB.Kastl PE. Polym. Bull. 1996, 31: 5955 -
21b
Dao J.Benoit D.Hawker CJ. J. Polym. Sci., Part A: Polym. Chem. 1998, 36: 2161 -
22a
Bordwell FG.Harrelson JA.Satish AV. J. Org. Chem. 1989, 54: 3101 -
22b
Kern JM.Federlin P. Tetrahedron Lett. 1977, 10: 837 -
24a
Marque S.LeMercier C.Tordo P.Fischer H. Macromolecules 2000, 33: 4403 -
24b
Sobek J.Martschke R.Fischer H. J. Am. Chem. Soc. 2001, 123: 2849 -
24c
A. Studer, University of Münster, personal communication.
- 25
Wetter C.Jantos K.Woithe K.Studer A. Org. Lett. 2003, 5: 2899
References
We thank the Degussa AG Hüls for a research sample of TEMPO.
20
General Procedure for the Preparation of 6a,b,d-f: Sodium hydride (124 mg, 3.10 mmol) was stirred with 3.0 mmol of 4 in 8 mL anhyd THF at 0 °C. Compound 4g was deprotonated at -78 °C and LDA was used instead of sodium hydride. When the hydrogen evolution had ceased, the suspension was warmed up to r.t. and 781 mg (3.2 mmol) of 2
[18]
were added. After stirring for 2 h, 1.5 mL H2O were added and the organic phase was separated. The aq phase was washed with Et2O (2 × 10 mL) and the combined organic phase was dried over MgSO4. The Et2O was evaporated and the crude product was purified by flash chromatography.
Compounds 6a,b,d-g were characterized by 1H NMR (300 MHz, CDCl3) and 13C NMR (75 MHz, CDCl3), MS and elemental analysis.
6a: 1H NMR: δ = 1.00-1.07 (m, 6 H, 2 × CH3), 1.20 (s, 6 H, 2 × CH3), 1.28 (t, J = 7.0 Hz, 3 H, CH2
CH
3
), 1.46 (s, 6 H, 3 × CH2), 2.30 (s, 3 H, CH3), 4.20 (q, 2 H, OCH2), 4.80 (s, 1 H, 2-H) ppm. 13C NMR: δ = 12.9 (q, CH2
CH
3
), 15.8 (t, CH2), 19.0 (2 q, CH3), 25.3 (q, C-4), 31.4, 31.8 (2 q, CH3), 38.9 (2 t, CH2), 58.9 [2 s, C(CH3)2], 60.3 (t, OCH2), 92.5 (d, C-2), 166.6 (s, C-1), 201.5 (s, C-3) ppm. MS (ESI, ES+): m/z (%) = 286 (77) [M + H+], 142 (20) [C19H18NH2
+], 141 (100) [C9H19N+], 126 (76) [C9H18
+], 61 (17). Anal. Calcd for C15H27NO4 (285.38): C, 63.13; H, 9.54; N, 4.91. Found: C, 63.03; H, 9.61; N, 4.94.
6b: Mp: 29-30 °C. Rf = 0.09 (PE-Et2O 20:1). 1H NMR: δ = 1.01, 1.20 (2 s, 12 H, 4 × CH3), 1.26-1.31 (m, 6 H, 2 × CH3), 1.42-1.46 (m, 6 H, 3 × CH2), 4.17-4.30 (m, 4 H, 2 × OCH2), 4.92 (s, 1 H, 2-H) ppm. 13C NMR: δ = 13.2 (2 q, CH2
CH
3), 16.1 (t, CH2), 19.3 (2 q, CH3), 31.7 (2 q, CH3), 39.4 (2 t, CH2), 59.4 [2 s, C(CH3)2], 60.7 (2 t, OCH2), 86.0 (d, C-2), 166.4 (2 s, C-1, C-3) ppm. MS (ESI, ES+): m/z (%) = 316 (15) [M + H+], 192 (35), 141 (22) [C9H19N+], 126 (100) [C9H18]. Anal. Calcd for C16H29NO5 (315.40): C, 60.93; H, 9.27; N, 4.44. Found: C, 61.01; H, 9.42; N, 4.40.
6d: Rf = 0.07 (PE-Et2O 20:1). Mp 54-55 °C. 1H NMR:
δ = 0.98 (s, 6 H, 3 × CH2), 2.21 (2 s, 6 H, 1-H, 5-H), 4.92 (s, 1 H, 3-H), 1.20 (s, 6 H, 3 × CH2), 1.45 (s, 6 H, 3 × CH2) ppm. 13C NMR: δ = 16.8 (t, CH2), 20.0 (2 q, CH3), 26.9 (2 q, C-1, C-5), 32.8 (2 q, CH3), 40.3 (2 t, CH2), 59.9 [2 s, C(CH3)2], 101.4 (d, C-3), 203.6 (2 s, C-2, C-4) ppm. MS (ESI, ES+): m/z (%) = 256 (24) [M + H+], 156 (2) [C9H18N=O+], 142 (30) [C9H18NH2
+], 141 (97) [C9H19N+], 126 (100) [C9H18
+], 70 (4), 60 (25), 43 (8) [CH3CO+]. Anal. Calcd for C14H25NO3 (255.35): C, 65.85; H, 9.87; N, 5.49. Found: C, 65.71; H, 9.98; N, 5.29.
6e: R
f = 0.22 (PE-Et2O 10:1). Mp 63 °C. 1H NMR: δ = 0.83, 0.99 (2 s, 6 H, 2 × CH3), 1.13 (t, J = 7.1 Hz, 3 H, CH2
CH
3), 1.18, 1.29 (2 s, 6 H, 2 × CH3), 1.40-1.48 (m, 6 H, 3 × CH2), 4.16 (q, 2 H, OCH2), 5.41 (s, 1 H, 2-H), 7.43-7.60 (m, 3 H, CHarom.), 8.13-8.16 (m, 2 H, CHarom.) ppm. 13C NMR: δ = 13.9 (q, CH2
CH
3), 17.0 (t, CH2), 20.2 (2 q, CH3), 32.5, 33.1 (2 q CH3), 40.1 (2 t, CH2), 60.0, 60.4 [2 s, C(CH3)2], 61.6 (t, OCH2), 92.9 (d, C-2), 128.4, 129.8, 133.5, (5 d, CHarom.), 134.6 (s, Carom.), 168.2 (s, C-1), 193.6 (s, C-3) ppm. MS (ESI, ES+): m/z (%) = 348 (38) [M + H+], 246 (5), 243 (12), 156 (8) [C9H18N=O+], 141 (75) [C9H19N+], 126(55) [C9H18
+], 122 (50), 105 (100) [C6H5CO+]. Anal. Calcd for C20H29NO4 (347.45): C, 69.14; H, 8.41; N, 4.03. Found: C, 69.16; H, 8.31; N, 3.91.
6f: R
f = 0.18 (PE-Et2O 15:1). Mp 67 °C. 1H NMR: δ = 0.83 (s, 3 H, CH3), 1.06 (s, 6 H, 2 × CH3), 1.26 (s, 3 H, CH3), 1.40-1.47 (m, 6 H, 3 × CH2), 2.24 (s, 3 H, 4-H), 5.59 (s, 1 H, 2-H), 7.43-7.59 (m, 3 H, CHarom.), 8.03-8.10 (m, 2 H, CHarom.) ppm. 13C NMR: δ = 16.9 (t, CH2), 20.2, 20.3 (2 q, CH3), 26.7 (q, C-4), 32.8, 33.0 (2 q, CH3), 40.2 (2 t, CH2), 60.0, 60.2 [2 s, C(CH3)2], 100.1 (d, C-2), 128.6, 129.9, 133.8, (5 d, CHarom.), 134.6 (s, Carom.), 195.3 (s, C-1), 203.5 (s, C-3) ppm. MS (ESI, ES+): m/z (%) = 318 (60) [M + H+], 276 (3) [M + H+ - OCCH2], 246 (2), 184 (4), 156 (3) [C9H18N=O+], 141 (100) [C9H19N+], 126 (80) [C9H18
+], 122 (30), 105 (100) [C6H5CO+], 60 (10). Anal. Calcd for C19H27NO3 (317.42): C, 71.89; H, 8.57; N, 4.41. Found: C, 72.00; H, 8.56; N, 4.04.
6g: Rf = 0.30 (CH-EtOAc, 10:1). Mp 27 °C. 1H NMR (400 MHz, CDCl3): δ = 1.00-1.01 (m, 6 H, 2 × CH3), 1.11-1.17 (m, 6 H, 2 × CH3), 1.32-1.53 (m, 6 H, 3 × CH2), 1.56-1.64 (m, 1 H, 4-H), 1.71-1.81 (m, 1 H, 5-H), 1.84-2.04 (m, 3 H, 3-H, 4-H, 5-H), 2.08-2.16 (m, 1 H, 3-H), 2.23-2.29 (m, 1 H, 6-H), 2.73-2.80 (m, 1 H, 6-H), 4.14-4.17 (m, 1 H, 2-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 17.1 (t, CH2), 20.1 (2 q, CH3), 22.0 (t, C-4), 28.4 (t, C-5), 34.8 (t, C-3), 33.5, 33.9 (2 q, CH3), 40.2 (2 t, CH2), 40.9 (t, C-6), 59.7 [2 s, C(CH3)2], 89.2 (d, C-2), 211.5 (s, C-1) ppm. MS (ESI, ES+): m/z (%) = 254 (100) [M + H+], 142 (55) [C9H18NH2
+], 126 (92) [C9H18
+], 113 (30) [M + H+ - C9H19N], 85 (28) [113 - CO], 67 (80). Anal. Calcd for C15H27NO2 (253.38): C, 71.10; H, 10.74; N, 5.53. Found: C, 70.96; H, 11.02; N, 5.39.
Monodeacetylated dehydrodimer of 5d: MS (ESI, ES+): m/z (%) = 155 (7) [M + H+]; Monodeacetylated dehydrodimer of 5f: MS (ESI, ES+): m/z (%) = 279 (5) [M + H+].
We thank the Zentrale Forschung der Bayer AG, Krefeld for the molecular weight determination.