Semin Thromb Hemost 2004; 30(2): 205-213
DOI: 10.1055/s-2004-825634
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Preclinical Animal Models for Hemophilia Gene Therapy: Predictive Value and Limitations

Fiona E.M Rawle1 , David Lillicrap1 , 2
  • 1Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
  • 2Professor of Pathology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Hemophilia A and B are excellent candidate disorders for the application of somatic cell gene therapy. One of the major advantages in the preclinical development of hemophilia gene therapy strategies has been the availability of several animal models for both hemophilia A and B. These models recapitulate many of the phenotypic aspects of human hemophilia and have proven to be very informative in exploring the efficacy and safety of gene therapy. Considerable progress has been made in the design of gene therapy protocols, and over the last 5 years it has been shown that long-term phenotypic correction, with sustained therapeutic levels of factor VIII (FVIII) and factor IX (FIX), can be attained in FVIII- and FIX-deficient mice and dogs using various viral vector-mediated gene therapy approaches. These animal models also have elucidated potential complications of gene therapy protocols, including acute vector-associated toxicities and the induction of neutralizing antibodies to the FVIII and FIX transgene products. Nevertheless, although the preclinical paradigm of hemophilic mouse followed by hemophilic dog studies has proven to be extremely helpful in evaluating the efficacy and safety of potential clinical gene therapy protocols, several limitations to these animal models still exist. This review presents a summary of the animal models available for hemophilia gene therapy, and highlights the various strengths and weaknesses of these models.

REFERENCES

  • 1 Bi L, Lawler A M, Antonarakis S E, High K A, Gearhart J D, Kazazian Jr. H H. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet. 1995;  10 119-121
  • 2 Wang L, Zoppe M, Hackeng T M, Griffin J H, Lee K-F, Verma I M. A factor-IX deficient mouse model for hemophilia B gene therapy.  Proc Natl Acad Sci USA. 1997;  94 11563-11566
  • 3 Lin H-F, Maeda N, Smithies O, Straight D L, Stafford D W. A coagulation factor-IX deficient mouse model for human hemophilia B.  Blood. 1997;  90 3962-3966
  • 4 Kundu R K, Sangiorgi F, Wu L Y et al.. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice.  Blood. 1998;  92 168-174
  • 5 Bi L, Sarkar R, Naas T et al.. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies.  Blood. 1996;  88 3446-3450
  • 6 Muchitsch E M, Turecek P L, Zimmermann K et al.. Phenotypic expression of murine hemophilia.  Thromb Haemost. 1999;  82 1371-1373
  • 7 Gilles J G, Vanzieleghem B, Saint-Remy J M. Animal models to explore mechanisms of tolerance induction to FVIII: SCID mice and SCID-FVIII-KO mice.  Haematologica. 2000;  85 103-106
  • 8 Brinkhous K M. Animal models of hemophilia. In: Animal Models of Thrombosis and Hemorrhagic Diseases. Bethesda, MD; National Institutes of Health 1976: 3-13
  • 9 Giles A R, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII:C deficiency) bleeding.  Blood. 1982;  60 727-730
  • 10 Graham J B, Buckwalter J A, Hartley L J, Brinkhous K M. Canine hemophilia: Observations on the course, the clotting anomaly, and the effect of blood transfusions.  J Exp Med. 1949;  90 97-111
  • 11 Connelly S, Mount J, Mauser A et al.. Complete short-term correction of canine hemophilia A by in vivo gene therapy.  Blood. 1996;  88 3846-3853
  • 12 Tinlin S, Webster S, Giles A R. The development of homologous (canine/anti-canine) antibodies in dogs with haemophilia A (factor VIII deficiency): a ten-year longitudinal study.  Thromb Haemost. 1993;  69 21-24
  • 13 Hough C, Kamisue S, Cameron C et al.. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe canine hemophilia A: Similarities with the intron 22 inversion mutation in human hemophilia.  Thromb Haemost. 2002;  87 659-665
  • 14 Lozier J N, Dutra A, Pak E et al.. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion.  Proc Natl Acad Sci USA. 2002;  99 12991-12996
  • 15 Lakich D, Kazazian Jr H H, Antonarakis S E, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe hemophilia A.  Nat Genet. 1993;  5 236-241
  • 16 Evans J P, Brinkhous K M, Brayer G D, Reisner H M, High K A. Canine hemophilia B resulting from a point mutation with unusual consequences.  Proc Natl Acad Sci USA. 1989;  86 10095-10099
  • 17 Herzog R W, Arruda V R, Fisher T H, Read M S, Nichols T C, High K A. Absence of circulating factor IX antigen in hemophilia B dogs of the UNC-Chapel Hill colony.  Thromb Haemost. 2000;  84 352-354
  • 18 Giannelli F, Green P M, Sommer S S et al.. Haemophilia B: database of point mutations and short additions and deletions-eighth edition.  Nucleic Acids Res. 1998;  26 265-268
  • 19 Mauser A E, Whitlark J, Whitney K M, Lothrop Jr C D. A deletion mutation causes Hemophilia B in Lhasa Apso dogs.  Blood. 1996;  88 3451-3455
  • 20 Herzog R W, Mountz J D, Arruda V R, High K A, Lothrop Jr C D. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation.  Mol Ther. 2001;  4 192-200
  • 21 Neuenschwander S, Kissling-Albrecht L, Heiniger J, Backfisch W, Stranzinger G, Pliska V. Inherited defect of blood clotting factor VIII (haemophilia A) in sheep.  Thromb Haemost. 1992;  68 618-620
  • 22 Maggio-Price L, Dodds W J. Factor IX deficiency (hemophilia B) in a family of British shorthair cats.  J Am Vet Med Assoc. 1993;  203 1702-1704
  • 23 Archer R K. True haemophilia (haemophilia A) in a thoroughbred foal.  Vet Rec. 1961;  73 338-341
  • 24 Lozier J N, Metzger M E, Donahue R E, Morgan R A. The rhesus macaque as an animal model for hemophilia B gene therapy.  Blood. 1999;  93 1875-1881
  • 25 Balague C, Zhou J, Dai Y et al.. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector.  Blood. 2000;  95 820-828
  • 26 Schowalter D B, Himeda C L, Winther B L, Wilson C B, Kay M A. Implication of interfering antibody formation and apoptosis as two different mechanisms leading to variable duration of adenovirus-mediated transgene expression in immune-competent mice.  J Virol. 1999;  73 4755-4766
  • 27 Mazzolini G, Narvaiza I, Perez-Diez A et al.. Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12.  Gene Ther. 2001;  8 259-267
  • 28 Brown B D, Shi C X, Rawle F E et al.. Factors influencing therapeutic efficacy and the host immune response to helper-dependent adenoviral gene therapy in hemophilia A mice.  J Thromb Haemost. 2004;  2 111-118
  • 29 Peng Y, Falck-Pedersen E, Elkon K B. Variation in adenovirus transgene expression between BALB/c and C57BL/6 mice is associated with difference in interleukin-12 and gamma interferon production and NK cell activation.  J Virol. 2001;  75 4540-4550
  • 30 Gallo-Penn A M, Shirley P S, Andrews J L et al.. In vivo evaluation of an adenoviral vector encoding canine factor VIII: high-level, sustained expression in hemophiliac mice.  Hum Gene Ther. 1999;  10 1791-1802
  • 31 Connelly S, Andrews J L, Gallo A M et al.. Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy.  Blood. 1998;  91 3273-3281
  • 32 Gallo-Penn A M, Shirley P S, Andrews J L et al.. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs.  Blood. 2001;  97 107-113
  • 33 Brown B D, Shi C X, Powell S, Hurlbut D, Graham F L, Lillicrap D. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A.  Blood. 2004;  103 804-810
  • 34 Chuah M K, Scheidner G, Thorrez L et al.. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors.  Blood. 2003;  101 1734-1743
  • 35 Chao H, Mao L, Bruce A T, Walsh C E. Sustained expression of human factor VIII in mice using a parvovirus- based vector.  Blood. 2000;  95 1594-1599
  • 36 Chao H, Walsh C E. Induction of tolerance to human factor VIII in mice.  Blood. 2001;  97 3311-3312
  • 37 Scallan C D, Liu T, Parker A E et al.. Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII.  Blood. 2003;  102 3919-3926
  • 38 Scallan C D, Lillicrap D, Jiang H et al.. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector.  Blood. 2003;  102 2031-2037
  • 39 Mansfield S G, Kole J, Puttaraju M et al.. Repair of CFTR mRNA by spiceosome-mediated RNA trans-splicing.  Gene Ther. 2000;  7 1885-1895
  • 40 Chao H, Mansfield S G, Bartel R C et al.. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing.  Nat Med. 2003;  9 1015-1020
  • 41 Peters L L, Cheever E M, Ellis H R et al.. Large scale, high-throughput screening for coagulation and hematologic phenotypes in mice.  Physiol Genomics. 2002;  11 185-193
  • 42 Michou A I, Santoro L, Christ M, Julliard V, Pavirani A, Mehtali M. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression.  Gene Ther. 1997;  4 473-482
  • 43 Greenwood R, Wang B, Midkiff K, White II G C, Lin H-F, Frelinger J A. Identification of T-cell epitopes in clotting factor IX and lack of tolerance in inbred mice.  J Thromb Haemost. 2003;  1 95-102
  • 44 Wang L, Takabe K, Bidlingmaier S M, Ill C R, Verma I M. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy.  Proc Natl Acad Sci USA. 1999;  96 3906-3910
  • 45 Nathwani A C, Davidoff A M, Hanawa H, Zhou J F, Vanin E F, Nienhuis A W. Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA.  Blood. 2001;  97 1258-1265
  • 46 Ge Y, Powell S, Van Roey M, McArthur J G. Factors influencing the development of an anti-factor IX (FIX) immune response following administration of adeno-associated virus-FIX.  Blood. 2001;  97 3733-3737
  • 47 Fields P A, Arruda V R, Armstrong E et al.. Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9.  Mol Ther. 2001;  4 201-210
  • 48 Tsui L V, Kelly M, Zayek N et al.. Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector.  Nat Biotechnol. 2002;  20 53-57
  • 49 Snyder R O, Miao C H, Patijn G A et al.. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors.  Nat Genet. 1997;  16 270-276
  • 50 Snyder R O, Miao C H, Meuse L et al.. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors.  Nat Med. 1999;  5 64-70
  • 51 Ehrhardt A, Kay M A. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses.  Blood. 2002;  99 3923-3930
  • 52 Wang L Y, Nichols T C, Read M S, Bellinger D A, Verma I M. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver.  Mol Ther. 2000;  1 154-158
  • 53 Kay M A, High K, Glader B et al.. A phase I/II clinical trial for liver directed AAV-mediated gene transfer for severe hemophilia B.  Blood. 2002;  100 115a
  • 54 Herzog R W, Fields P A, Arruda V R et al.. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy.  Hum Gene Ther. 2002;  13 1281-1291
  • 55 Mountz J D, Herzog R W, Tillson D M, Goodman S A, Robinson Jr N, High K A. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy.  Blood. 2002;  99 2670-2676
  • 56 Nathwani A C, Davidoff A M, Hanawa H et al.. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques.  Blood. 2002;  100 1662-1669
  • 57 Reddy P S, Sakhuja K, Ganesh S et al.. Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector.  Mol Ther. 2002;  5 63-73

 Dr.
David Lillicrap

Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen’s University

Kingston, Ontario

Canada K7L 3N6

Email: lillicrap@cliff.path.queensu.ca