Subscribe to RSS
DOI: 10.1055/s-2004-825620
An Alternative Route to Protected Aldols: Cobalt-Catalyzed Hydroformylation of Epoxides and in situ Protection of β-Hydroxyaldehydes by HC(OMe)3
Publication History
Publication Date:
04 June 2004 (online)
Abstract
A wide range of epoxides were efficiently converted to protected aldols by hydroformylation-acetalization using Co2(CO)8 as a catalyst in trimethyl orthoformate. The formylation of terminal epoxides was regioselective for the terminal position, and (S)-1-benzyloxy-2,3-epoxypropane was transformed into (R)-1-benzyloxy-4,4-dimethoxybutan-2-ol with retention of the configuration.
Key words
acetals - hydroformylations - epoxides - cobalt - aldols
-
1a
Heathcock CH. In Asymmetric Synthesis Part B, Vol. 3:Morrison JD. Academic Press; New York: 1984. Chap. 2. -
1b
Alcaide B.Almendros P. Eur. J. Org. Chem. 2002, 1595 -
1c
Machajewski TD.Wong CH. Angew. Chem. Int. Ed. 2000, 39: 1352 -
1d
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432 -
1e
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 -
1f
Shibasaki M.Sasai H.Arai T.Iida T. Pure Appl. Chem. 1998, 70: 1027 - 2
Heathcock CH. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; New York: 1991. Chap. 1.5. -
3a
Northrup AB.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 6798 -
3b
Denmark SE.Ghosh SK. Angew. Chem. Int. Ed. 2001, 40: 4759 -
3c
Han Z.Yorimitsu H.Shinokubo K.Oshima K. Tetrahedron Lett. 2000, 41: 4415 -
3d
Mahrwald R.Costisella B.Gündogan B. Synthesis 1998, 262 -
3e
Heathcock CH.Buse CT.Kleschick WA.Pirrung MC.Sohn JE.Lampe J. J. Org. Chem. 1980, 45: 1066 -
4a
Powell JB,Weider PR,Knifton JF,Allen KD,Slaugh LH, andArhancet JP. inventors; U.S. Patent 6,660,892. -
4b
Lee BN,Yang DJ, andByun YH. inventors; U.S. Patent 6,348,611. -
4c
Weber R.Englert U.Ganter B.Keim W.Möthrath M. Chem. Commun. 2000, 1419 - Recent reports on carbonylation reaction of epoxides. Carbonylative ring expansion, see:
-
5a
Schmidt JAR.Mahadevan V.Getzler YDYL.Coates GW. Org. Lett. 2004, 6: 373 -
5b
Mahadevan V.Getzler YDYL.Coates GW. Angew. Chem. Int. Ed. 2002, 41: 2781 -
5c
Lee JT.Thomas PJ.Alper HJ. J. Org. Chem. 2001, 66: 5424 -
5d Hydroesterification, see:
Hinterding K.Jacobsen EN. J. Org. Chem. 1999, 64: 2164 -
5e Silylamidation, see:
Goodman SN.Jacobsen EN. Angew. Chem. Int. Ed. 2002, 41: 4703 -
5f Alternating co-polymerization, see:
Allmendinger M.Eberhardt R.Luinstra G.Rieger B. J. Am. Chem. Soc. 2002, 124: 5646 -
5g
Takeuchi D.Sakaguchi Y.Osakada K. J. Polym. Sci., Part A: Polym. Chem. 2002, 40: 4530 -
6a
Chatani N.Murai S. Synlett 1996, 414 -
6b
Fukumoto Y.Chatani N.Murai S. J. Org. Chem. 1993, 58: 4187 - 7
Roos L.Goetz RW.Orchin M. J. Org. Chem. 1965, 30: 3203 -
8a
Fernández E.Castillón S. Tetrahedron Lett. 1994, 35: 2361 -
8b
Stille JK.Su H.Brechot P.Parrinello G.Hegedus LS. Organometallics 1991, 10: 1183 -
8c
Parrinello G.Stille JK. J. Am. Chem. Soc. 1987, 109: 7122 - 11
Kakuchi T.Narumi A.Kaga H.Ishibashi T.Obata M.Yokota K. Macromolecules 2000, 33: 3964 - 12 During the reaction, we observed more amount of gas absorption than the expected amount for the reaction with epoxide. This phenomenon is probably due to the reaction of HC(OMe)3 with CO/H2 to yield CH3CH(OMe)2, MeOH and HCO2Me, see:
Piacenti F.Cioni C.Pino P. Chem. Ind. (London) 1960, 1240 - 15
Rosen T.Heathcock CH. Tetrahedron 1986, 42: 4909 - 16
Heck RF. J. Am. Chem. Soc. 1963, 85: 1460 -
17a
Johnson RA.Sharpless KB. In Catalytic Asymmetric Synthesis 2nd ed.:Ojima I. Wiley; New York: 2000. Chap. 6A. -
17b
Katsuki T. In Comprehensive Asymmetric Catalysis Vol. II:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. Chap. 18.1. -
18a
Schaus SE.Brandes BD.Larrow JF.Tokunaga M.Hansen KB.Gould AE.Furrow ME.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 1307 -
18b
Tokunaga M.Larrow JF.Kakiuchi F.Jacobsen EN. Science 1997, 277: 936 -
19a
Stork G.Ozorio AA.Leong YW. Tetrahedron Lett. 1978, 52: 5175 -
19b
Possel O.van Leusen AM. Tetrahedron Lett. 1977, 18: 4229
References
A typical procedure is as follows: A mixture of cyclohexene oxide (0.50 mL, 5.0 mmol), Co2 (CO)8 (43 mg, 0.125 mmol) and 5 (98 mg, 0.25 mmol) in trimethyl orthoformate (10 mL) was placed in a 20 mL Schlenk tube and degassed by freeze-thaw cycles. Then, the solution was transferred into a 50 mL autoclave. After carbon monoxide (40 atm) and hydrogen (40 atm) were pressurized, the resulting mixture was stirred at 90 °C for 21 h. The reaction mixture was cooled down to the ambient temperature, and the carbon monoxide and hydrogen pressure were slowly released. The volatile materials were evaporated and the resulting crude residue was treated with MeOH (10 mL) under refluxing overnight. The solvent was removed off by evaporation, and then the residue was purified by silica gel chromatography (hexane-EtOAc = 10:1) to give 3 in 70% yield. 1H NMR (CDCl3): δ = 4.28 (d, J = 6.9 Hz, 1 H), 4.12 (s, 1 H), 3.53-3.46 (m, 1 H), 3.45 (s, 3 H), 3.35 (s, 3 H), 2.04-1.97 (m, 1 H), 1.79-1.61 (m, 4 H), 1.25-1.12 (m, 3 H), 1.05-0.96 (m, 1 H). 13C NMR (CDCl3): δ = 108.97, 71.22, 55.26, 52.32, 45.78, 34.24, 26.37, 24.99, 24.39. Anal. Calcd for C9H18O3: C, 62.04; H, 10.41. Found: C, 61.86; H, 10.35.
10The configuration was assigned by comparing the 1H NMR signals of the diol given by reduction of 3 (60% yield) with those reported. [11]
13Spectral data for new compounds. Compound 7a: 1H NMR (CDCl3): δ = 4.26 (d, J = 8.3 Hz, 1 H), 3.99-3.94 (m, 1 H), 3.42 (s, 3 H), 3.32 (s, 3 H), 2.68 (br s, 1 H), 2.10-2.03 (m, 1 H), 2.01-1.92 (m, 1 H), 1.88-1.81 (m, 1 H), 1.77-1.65 (m, 1 H), 1.63-1.53 (m, 1 H), 1.41-1.33 (m, 1 H). 13C NMR (CDCl3): δ = 108.02, 75.59, 54.83, 51.56, 49.26, 33.49, 25.56, 21.27. Anal. Calcd for C8H16O3: C, 59.97; H, 10.07. Found: C, 60.11; H, 9.85. Compound 7b: 1H NMR (CDCl3): δ = 4.33 (d, J = 5.5 Hz, 1 H), 3.89-3.82 (m, 1 H), 3.44 (s, 3 H), 3.37 (s, 3 H), 2.95 (d, J = 5.1 Hz, 1 H), 1.76-1.71 (m, 1 H), 1.59-1.50 (m, 1 H), 1.45-1.27 (m, 7 H), 0.97-0.90 (m, 6 H). 13C NMR (CDCl3): δ = 108.32, 70.51, 56.16, 53.88, 44.91, 35.78, 27.05, 21.46, 19.75, 14.44, 14.13. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.63; H, 11.94. Compound linear-7c: 1H NMR (CDCl3): δ = 4.29 (d, J = 6.0 Hz, 1 H), 3.70-3.64 (m, 1 H), 3.61-3.56 (m, 1 H), 3.45 (s, 3 H), 3.37 (s, 3 H), 2.85 (dd, J = 7.8, 4.1 Hz, 1 H), 1.87-1.81 (m, 1 H), 1.42-1.20 (m, 10 H), 0.88 (t, J = 6.9 Hz, 3 H). 13C NMR (CDCl3): δ = 108.89, 62.62, 55.85, 53.48, 42.73, 31.72, 29.56, 27.06, 26.61, 22.60, 14.05. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.56; H, 11.92. Compound linear-7d: 1H NMR (CDCl3): δ = 4.61 (t, J = 5.5 Hz, 1 H), 4.05-3.99 (m, 1 H), 3.55 (qd, J
H-Cl = 11 Hz,
J
H-H = 6.0 Hz, 2 H), 3.39 (s, 3 H), 3.38 (s, 3 H), 3.07 (br s, 1 H), 1.93-1.84 (m, 2 H). 13C NMR (CDCl3): δ = 103.16, 68.33, 53.87, 53.43, 49.34, 36.72. Anal. Calcd for C6H13O3Cl: C, 42.74; H, 7.77. Found: C, 42.56; H, 7.88. Compound linear-7e: 1H NMR (CDCl3): δ = 7.37-7.27 (m, 5 H), 4.60 (t, J = 5.5 Hz, 1 H), 4.56 (s, 2 H), 4.02-3.95 (m, 1 H), 3.49-3.46 (m, 1 H), 3.43-3.40 (m, 1 H), 3.36 (s, 3 H), 3.36 (s, 3 H), 2.87 (s, 1 H), 1.81-1.78 (m, 2 H). 13C NMR (CDCl3): δ = 138.00, 128.41, 127.70, 103.17, 74.09, 73.32, 67.33, 53.51, 53.32, 36.23. Anal. Calcd for C13H20O4: C, 64.98; H, 8.39. Found: C, 64.80; H, 8.35. [α]D
26 for linear-(R)-7e = 1.7° (c 3.0, CHCl3).
No racemization was confirmed by HPLC analysis (DAICEL CHIRALCEL OD-H, Hexane-i-PrOH = 95:5). The absolute configuration was determined based on the optical rotation of 2-hydroxy-1,4-butanediol which was prepared from linear-(R)-7e in 4 steps.