Synlett 2004(8): 1367-1370  
DOI: 10.1055/s-2004-825620
LETTER
© Georg Thieme Verlag Stuttgart · New York

An Alternative Route to Protected Aldols: Cobalt-Catalyzed Hydroformyl­ation of Epoxides and in situ Protection of β-Hydroxyaldehydes by HC(OMe)3

Koji Nakanoa, Masaya Katayamaa, Shinjiro Ishiharab, Tamejiro Hiyamab, Kyoko Nozaki*a
a Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Fax: +81(3)58417261; e-Mail: nozaki@chembio.t.u-tokyo.ac.jp;
b Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
Further Information

Publication History

Received 27 February 2004
Publication Date:
04 June 2004 (online)

Abstract

A wide range of epoxides were efficiently converted to protected aldols by hydroformylation-acetalization using Co2(CO)8 as a catalyst in trimethyl orthoformate. The formylation of terminal epoxides was regioselective for the terminal position, and (S)-1-benzyloxy-2,3-epoxypropane was transformed into (R)-1-benzyl­oxy-4,4-dimethoxybutan-2-ol with retention of the configuration.

    References

  • 1a Heathcock CH. In Asymmetric Synthesis   Part B, Vol. 3:  Morrison JD. Academic Press; New York: 1984.  Chap. 2.
  • 1b Alcaide B. Almendros P. Eur. J. Org. Chem.  2002,  1595 
  • 1c Machajewski TD. Wong CH. Angew. Chem. Int. Ed.  2000,  39:  1352 
  • 1d Denmark SE. Stavenger RA. Acc. Chem. Res.  2000,  33:  432 
  • 1e Nelson SG. Tetrahedron: Asymmetry  1998,  9:  357 
  • 1f Shibasaki M. Sasai H. Arai T. Iida T. Pure Appl. Chem.  1998,  70:  1027 
  • 2 Heathcock CH. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  Chap. 1.5.
  • 3a Northrup AB. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  6798 
  • 3b Denmark SE. Ghosh SK. Angew. Chem. Int. Ed.  2001,  40:  4759 
  • 3c Han Z. Yorimitsu H. Shinokubo K. Oshima K. Tetrahedron Lett.  2000,  41:  4415 
  • 3d Mahrwald R. Costisella B. Gündogan B. Synthesis  1998,  262 
  • 3e Heathcock CH. Buse CT. Kleschick WA. Pirrung MC. Sohn JE. Lampe J. J. Org. Chem.  1980,  45:  1066 
  • 4a Powell JB, Weider PR, Knifton JF, Allen KD, Slaugh LH, and Arhancet JP. inventors; U.S. Patent  6,660,892. 
  • 4b Lee BN, Yang DJ, and Byun YH. inventors; U.S. Patent  6,348,611. 
  • 4c Weber R. Englert U. Ganter B. Keim W. Möthrath M. Chem. Commun.  2000,  1419 
  • Recent reports on carbonylation reaction of epoxides. Carbonylative ring expansion, see:
  • 5a Schmidt JAR. Mahadevan V. Getzler YDYL. Coates GW. Org. Lett.  2004,  6:  373 
  • 5b Mahadevan V. Getzler YDYL. Coates GW. Angew. Chem. Int. Ed.  2002,  41:  2781 
  • 5c Lee JT. Thomas PJ. Alper HJ. J. Org. Chem.  2001,  66:  5424 
  • 5d Hydroesterification, see: Hinterding K. Jacobsen EN. J. Org. Chem.  1999,  64:  2164 
  • 5e Silylamidation, see: Goodman SN. Jacobsen EN. Angew. Chem. Int. Ed.  2002,  41:  4703 
  • 5f Alternating co-polymerization, see: Allmendinger M. Eberhardt R. Luinstra G. Rieger B. J. Am. Chem. Soc.  2002,  124:  5646 
  • 5g Takeuchi D. Sakaguchi Y. Osakada K. J. Polym. Sci., Part A: Polym. Chem.  2002,  40:  4530 
  • 6a Chatani N. Murai S. Synlett  1996,  414 
  • 6b Fukumoto Y. Chatani N. Murai S. J. Org. Chem.  1993,  58:  4187 
  • 7 Roos L. Goetz RW. Orchin M. J. Org. Chem.  1965,  30:  3203 
  • 8a Fernández E. Castillón S. Tetrahedron Lett.  1994,  35:  2361 
  • 8b Stille JK. Su H. Brechot P. Parrinello G. Hegedus LS. Organometallics  1991,  10:  1183 
  • 8c Parrinello G. Stille JK. J. Am. Chem. Soc.  1987,  109:  7122 
  • 11 Kakuchi T. Narumi A. Kaga H. Ishibashi T. Obata M. Yokota K. Macromolecules  2000,  33:  3964 
  • 12 During the reaction, we observed more amount of gas absorption than the expected amount for the reaction with epoxide. This phenomenon is probably due to the reaction of HC(OMe)3 with CO/H2 to yield CH3CH(OMe)2, MeOH and HCO2Me, see: Piacenti F. Cioni C. Pino P. Chem. Ind. (London)  1960,  1240 
  • 15 Rosen T. Heathcock CH. Tetrahedron  1986,  42:  4909 
  • 16 Heck RF. J. Am. Chem. Soc.  1963,  85:  1460 
  • 17a Johnson RA. Sharpless KB. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley; New York: 2000.  Chap. 6A.
  • 17b Katsuki T. In Comprehensive Asymmetric Catalysis   Vol. II:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; New York: 1999.  Chap. 18.1.
  • 18a Schaus SE. Brandes BD. Larrow JF. Tokunaga M. Hansen KB. Gould AE. Furrow ME. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  1307 
  • 18b Tokunaga M. Larrow JF. Kakiuchi F. Jacobsen EN. Science  1997,  277:  936 
  • 19a Stork G. Ozorio AA. Leong YW. Tetrahedron Lett.  1978,  52:  5175 
  • 19b Possel O. van Leusen AM. Tetrahedron Lett.  1977,  18:  4229 
9

A typical procedure is as follows: A mixture of cyclohexene oxide (0.50 mL, 5.0 mmol), Co2 (CO)8 (43 mg, 0.125 mmol) and 5 (98 mg, 0.25 mmol) in trimethyl orthoformate (10 mL) was placed in a 20 mL Schlenk tube and degassed by freeze-thaw cycles. Then, the solution was transferred into a 50 mL autoclave. After carbon monoxide (40 atm) and hydrogen (40 atm) were pressurized, the resulting mixture was stirred at 90 °C for 21 h. The reaction mixture was cooled down to the ambient temperature, and the carbon monoxide and hydrogen pressure were slowly released. The volatile materials were evaporated and the resulting crude residue was treated with MeOH (10 mL) under refluxing overnight. The solvent was removed off by evaporation, and then the residue was purified by silica gel chromatography (hexane-EtOAc = 10:1) to give 3 in 70% yield. 1H NMR (CDCl3): δ = 4.28 (d, J = 6.9 Hz, 1 H), 4.12 (s, 1 H), 3.53-3.46 (m, 1 H), 3.45 (s, 3 H), 3.35 (s, 3 H), 2.04-1.97 (m, 1 H), 1.79-1.61 (m, 4 H), 1.25-1.12 (m, 3 H), 1.05-0.96 (m, 1 H). 13C NMR (CDCl3): δ = 108.97, 71.22, 55.26, 52.32, 45.78, 34.24, 26.37, 24.99, 24.39. Anal. Calcd for C9H18O3: C, 62.04; H, 10.41. Found: C, 61.86; H, 10.35.

10

The configuration was assigned by comparing the 1H NMR signals of the diol given by reduction of 3 (60% yield) with those reported. [11]

13

Spectral data for new compounds. Compound 7a: 1H NMR (CDCl3): δ = 4.26 (d, J = 8.3 Hz, 1 H), 3.99-3.94 (m, 1 H), 3.42 (s, 3 H), 3.32 (s, 3 H), 2.68 (br s, 1 H), 2.10-2.03 (m, 1 H), 2.01-1.92 (m, 1 H), 1.88-1.81 (m, 1 H), 1.77-1.65 (m, 1 H), 1.63-1.53 (m, 1 H), 1.41-1.33 (m, 1 H). 13C NMR (CDCl3): δ = 108.02, 75.59, 54.83, 51.56, 49.26, 33.49, 25.56, 21.27. Anal. Calcd for C8H16O3: C, 59.97; H, 10.07. Found: C, 60.11; H, 9.85. Compound 7b: 1H NMR (CDCl3): δ = 4.33 (d, J = 5.5 Hz, 1 H), 3.89-3.82 (m, 1 H), 3.44 (s, 3 H), 3.37 (s, 3 H), 2.95 (d, J = 5.1 Hz, 1 H), 1.76-1.71 (m, 1 H), 1.59-1.50 (m, 1 H), 1.45-1.27 (m, 7 H), 0.97-0.90 (m, 6 H). 13C NMR (CDCl3): δ = 108.32, 70.51, 56.16, 53.88, 44.91, 35.78, 27.05, 21.46, 19.75, 14.44, 14.13. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.63; H, 11.94. Compound linear-7c: 1H NMR (CDCl3): δ = 4.29 (d, J = 6.0 Hz, 1 H), 3.70-3.64 (m, 1 H), 3.61-3.56 (m, 1 H), 3.45 (s, 3 H), 3.37 (s, 3 H), 2.85 (dd, J = 7.8, 4.1 Hz, 1 H), 1.87-1.81 (m, 1 H), 1.42-1.20 (m, 10 H), 0.88 (t, J = 6.9 Hz, 3 H). 13C NMR (CDCl3): δ = 108.89, 62.62, 55.85, 53.48, 42.73, 31.72, 29.56, 27.06, 26.61, 22.60, 14.05. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.56; H, 11.92. Compound linear-7d: 1H NMR (CDCl3): δ = 4.61 (t, J = 5.5 Hz, 1 H), 4.05-3.99 (m, 1 H), 3.55 (qd, J H-Cl = 11 Hz,
J H-H = 6.0 Hz, 2 H), 3.39 (s, 3 H), 3.38 (s, 3 H), 3.07 (br s, 1 H), 1.93-1.84 (m, 2 H). 13C NMR (CDCl3): δ = 103.16, 68.33, 53.87, 53.43, 49.34, 36.72. Anal. Calcd for C6H13O3Cl: C, 42.74; H, 7.77. Found: C, 42.56; H, 7.88. Compound linear-7e: 1H NMR (CDCl3): δ = 7.37-7.27 (m, 5 H), 4.60 (t, J = 5.5 Hz, 1 H), 4.56 (s, 2 H), 4.02-3.95 (m, 1 H), 3.49-3.46 (m, 1 H), 3.43-3.40 (m, 1 H), 3.36 (s, 3 H), 3.36 (s, 3 H), 2.87 (s, 1 H), 1.81-1.78 (m, 2 H). 13C NMR (CDCl3): δ = 138.00, 128.41, 127.70, 103.17, 74.09, 73.32, 67.33, 53.51, 53.32, 36.23. Anal. Calcd for C13H20O4: C, 64.98; H, 8.39. Found: C, 64.80; H, 8.35. [α]D 26 for linear-(R)-7e = 1.7° (c 3.0, CHCl3).

14

No racemization was confirmed by HPLC analysis (DAICEL CHIRALCEL OD-H, Hexane-i-PrOH = 95:5). The absolute configuration was determined based on the optical rotation of 2-hydroxy-1,4-butanediol which was prepared from linear-(R)-7e in 4 steps.