Synlett 2004(6): 1064-1068  
DOI: 10.1055/s-2004-822899
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Synthesis of Alkylidenecyclopropanes by the Julia-Lythgoe-type Olefination Using Sulfones and Sulfoxides

Angela M. Bernard*, Angelo Frongia, Pier Paolo Piras*, Francesco Secci
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Fax: +39(070)6754388; e-Mail: pppiras@unica.it;
Further Information

Publication History

Received 19 January 2004
Publication Date:
25 March 2004 (online)

Abstract

The first use of the Julia-Lythgoe-type olefination with cyclopropylsulfones and cyclopropylsulfoxides for the synthesis of alkylidenecyclopropanes is reported.

    References

  • Reviews:
  • 1a Brandi A. Goti A. Chem. Rev.  1998,  98:  589 
  • 1b Brandi A. Cicchi S. Cordero FM. Goti A. Chem. Rev.  2003,  103:  1213 
  • For reviews on this topic see:
  • 2a Binger P. Buch HM. Top. Curr. Chem.  1987,  135:  77 
  • 2b Goti A. Cordero FM. Brandi A. Top. Curr. Chem.  1996,  178:  2 
  • 3 Noyori R. Odagi T. Takaya H. J. Am. Chem. Soc.  1970,  92:  5780 
  • 4 Ohta T. Takaya H. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Pergamon Press; Oxford: 1991.  p.1185 
  • 5 Hsiao C.-N. Hannick SM. Tetrahedron Lett.  1990,  31:  6609 
  • 6 Motherwell WB. Shipman M. Tetrahedron Lett.  1991,  32:  1103 ; and references therein
  • 7 Trost BM. Angew. Chem., Int. Ed. Engl.  1986,  25:  1 
  • 8 Donaldson WA. Wang J. Cepa VG. Suson JD. J. Org. Chem.  1989,  54:  6056 
  • 9 Pisaneschi F. Cordero FM. Goti A. Paugam R. Ollivier J. Brandi A. Salaun J. Tetrahedron: Asymmetry  2000,  11:  897 
  • 10 Salaun J. Rearrangements Involving the Cyclopropyl Group, In The Chemistry of the Cyclopropyl Group   Rappoport Z. Wiley; New York: 1987.  p.809 
  • 11 Salaun J. Conia JM. J. Chem. Soc., Chem. Commun.  1971,  1579 
  • 12 Salaun J. Champion J. Conia JM. Org. Synth.  1977,  57:  36 
  • 13 Salaun J. Top. Curr. Chem.  1988,  144:  1 
  • 14 Bernard AM. Floris C. Frongia A. Piras PP. Tetrahedron  2000,  56:  4555 
  • 15 Suginome M. Matsuda T. Ito Y. J. Am. Chem. Soc.  2000,  122:  11015 
  • 16 Ishiyama T. Momota S. Miyaura N. Synlett  1999,  1790 
  • 17 Bessmertnykh AG. Blinov KA. Grishin YK. Donskaya NA. Tveritinova EV. Yurieva NM. Beletskaya IP. J. Org. Chem.  1997,  62:  6069 
  • 18 Chatani N. Takeyasu T. Hanafusa T. Tetrahedron Lett.  1988,  29:  3979 
  • 19 Nakamura I. Itagaki H. Yamamoto Y. J. Org. Chem.  1998,  63:  6458 
  • 20 Camacho DH. Nakamura L. Saito S. Yamamoto Y. Angew. Chem. Int. Ed.  1999,  38:  3365 
  • 21 Tsukada N. Shibuya A. Nakamura I. Kitahara H. Yamamoto Y. Tetrahedron  1999,  55:  8833 
  • For the aminoacid hypoglycine see:
  • 22a Hassall CH. Reyle K. Biochem. J.  1955,  60:  334 
  • 22b Fowden L. Pratt HM. Phytochemistry  1973,  12:  1677 
  • 22c Baldwin JE. Adlington RM. Bebbington D. Russel AT. Tetrahedron  1994,  50:  12015 
  • 22d For the methylenecyclopropyl glycine see: Grey DO. Fowden L. Biochem. J.  1962,  82:  385 
  • 22e See also: Kurokawa N. Ohfune Y. Tetrahedron Lett.  1985,  26:  83 
  • 22f For the amphimic acids A and B see: Nemoto T. Ojika M. Sakagami Y. Tetrahedron Lett.  1997,  38:  5667 ; and ref. 23b
  • 22g For a cyclopropylidene unit present in a quinoline derivative, isolated from the fermentation broth of Cytophaga Johnsonii, that has antibiotic activity against a few bacteria see: Evans JR. Napier EJ. Fletton RA. J. Antibiot.  1978,  31:  952 
  • For some examples see:
  • 23a Salaun J. Bennani F. Compain JC. Fadel A. Ollivier J. J. Org. Chem.  1980,  45:  4129 
  • 23b Cohen T. Sherbine JP. Matz JR. Hutchins RR. McHenry BM. Willey PR. J. Am. Chem. Soc.  1984,  106:  3245 
  • 23c Meijs GF. Eichinger PCH. Tetrahedron Lett.  1987,  28:  5559 
  • 23d Liu H. Shook CA. Jamison JA. Thiruvazhi M. Cohe T. J. Am. Chem. Soc.  1998,  120:  605 
  • 23e Katritzky AR. Du W. Levell JR. Li J. J. Org. Chem.  1998,  63:  6710 
  • 23f Nemoto T. Yoshino G. Ojika M. Sakagami Y. Tetrahedron  1997,  53:  16669 
  • 24 Bernard AM. Frongia A. Piras PP. Synth. Commun.  2003,  33:  801 
  • 25a Julia M. Paris J.-M. Tetrahedron Lett.  1973,  4833 
  • 25b Kocienski PP. Lythgoe B. Ruston SJ. J. Chem. Soc., Perkin Trans. 1  1978,  829 
  • 25c Simpkins NS. Sulphones in Organic Synthesis   Pergamon; Oxford: 1993.  p.254-262  
  • 26 Satoh T. Hanaki N. Yamada N. Asano T. Tetrahedron  2000,  56:  6223 
  • 28 Cyclopropylphenyl sulfide is a rather expensive commercial product, which can be conveniently prepared using cheap starting materials: Tanaka K. Uneme H. Matsui S. Kaji A. Bull. Chem. Soc. Jpn.  1982,  55:  2965 
  • 29a Salaun J. Hanack M. J. Org.Chem.  1975,  40:  1994 
  • 29b Halazy S. Dumont W. Krief A. Tetrahedron Lett.  1981,  22:  4737 
  • 29c Krief A. Ronvaux A. Tuch A. Bull. Soc. Chim. Belg.  1997,  106:  699 
  • For a more efficient preparation of the alkylidene-cyclopropane 7c see:
  • 30a Zefirov NS. Kozhushkov SI. Kuznetsova TS. Lukin KA. Kazimirchik IV. J. Org. Chem. USSR (Engl. Transl.)  1988,  24:  605 
  • 30b Meagher TP. Yet L. Hsiao C.-N. Shechter H. J. Org. Chem.  1998,  63:  4181 
27

Typical Procedure for the Reductive Elimination of the Sulfones with Na/Hg.
To a stirred suspension of sodium amalgam (10%, 422 mg, 1.85 mmol) in THF (6 mL) and MeOH (2 mL) at -20 °C, under Argon was added a solution of the appropriate cyclopropylsulfone (0.37 mmol) in THF (2 mL). After 30 min at same temperature the reaction mixture was diluted with Et2O, washed with brine, dried and concentrated in vacuo. Chromatography with light petroleum-Et2O, (1:1) yielded the corresponding alkylidenecyclopropanes.
Typical Procedure for the Reductive Elimination of the Sulfones with Mg/HgCl 2 cat.
A mixture of the cyclopropylsulfone (0.76 mmol), Mg powder (54.7 mg, 2.28 mmol) and few crystals of HgCl2 in dry EtOH (10 mL) was stirred for 1 h at r.t. The reaction mixture was then poured into cold 0.5 N HCl and extracted with Et2O. The organic layer was washed with sat. aq NaHCO3, dried (Na2SO4), filtered and then concentrated in vacuo to give the crude products which were purified as above.
Typical Procedure for the Reductive Elimination of the Sulfoxides with n -BuLi.
To a solution of n-BuLi (1.5 M in hexane, 1.6 mL, 2.4 mmol) at -78 °C, under an argon atmosphere, a solution of the cyclopropylsulfoxide (0.6 mmol) in THF (10 mL) was added dropwise with stirring. After stirring for 5 min, the reaction was quenched with sat. aq NH4Cl and the mixture was extracted with Et2O. The organic layer, dried and evaporated, gave the corresponding alkylidenecyclo-propanes that were purified as above.
All new compounds have been fully characterized by 1H NMR (300 MHz), 13C NMR (75.4 MHz), IR, GLC mass spectra (70 eV) and elemental analyses.
Selected analytical data for some representative derivatives are reported.
Cyclopropyl carbinol 1d: A 65:35 mixture of two diastereoisomers. Minor isomer. White crystals, mp 58-60 °C. Yield: 21%. [α]D 25 +39.30 (c 3.89, CHCl3). IR (film): 3400 cm-1.1H NMR (CDCl3): δ = 0.91-1.30 (m, 4 H), 1.34 (s, 3 H), 1.39 (s, 3 H), 2.62 (br s, 1 H), 3.49 (d, 1 H, J = 5.1 Hz), 3.78 (t, 1 H, J = 8.1 Hz), 4.04 (dd, 1 H, J = 8.1 Hz and 6.6 Hz), 4.43 (q, 1 H, J = 6.6 Hz), 7.12-7.46 (m, 5 H). 13C NMR (CDCl3): δ = 11.3, 13.9, 25.2, 26.4, 26.8, 66.8, 73.4, 77.5, 109.1, 125.7, 128.1, 128.7, 136.1. MS: m/z (%) = 280 (13) [M+], 265 (15), 207(10), 191 (13), 178 (14), 149 (13), 101(100), 91(16). Anal. Calcd for C15H20O3S: C, 64.26; H, 7.19; S, 11.43. Found: C, 64.41; H, 7.26; S, 11.39. Major isomer. Yellow oil. Yield 40%. [α]D 27 -25.74 (c 4.00, CHCl3). IR (neat): 3430 cm-1. 1H NMR (CDCl3): δ = 0.93-1.28 (m, 4 H), 1.31 (s, 3 H), 1.38 (s, 3 H), 2.65 (br s, 1 H), 3.51 (d, 1 H, J = 5.7 Hz), 3.91 (dd, 1 H, J = 6.3 Hz and J = 8.4 Hz), 4.04 (dd, 1 H, J = 8.4 Hz and 6.3 Hz), 4.31 (q, 1 H, J = 6.3 Hz), 7.12-7.48 (m, 5 H). 13C NMR (CDCl3): δ = 13.3, 13.6, 25.1, 26.1, 27.3, 65.5, 75.0, 78.7, 108.5, 125.6, 128.1, 128.5, 136.0. MS: m/z (%) = 280 (14) [M+], 265 (20), 204 (4), 191(23), 179 (20), 149 (14), 101(100), 91(15). Anal. Calcd for C15H20O3S: C, 64.26; H, 7.19; S, 11.43. Found: C, 64.36; H, 7.28; S, 11.34.
Sulfoxide 8d: (Obtained by oxidation of the minor isomer of 1d): Colorless oil. Yield 90%. Spectral data refer to a 70:30 mixture of two inseparable diastereoisomers. IR (neat): 1040, 3430 cm-1. 1H NMR (CDCl3): δ = 0.98 (s, 3 H), 1.18-1.57 (m, 8 H), 1.22 (s, 3 H), 1.27 (s, 3 H), 1.43 (s, 3 H), 1.84 (s, 2 H), 3.64-4.29 (m, 8 H), 7.51-7.70 (m, 10 H). Major isomer: MS: m/z (%) = 281 (39) [M+ - 15], 221 (18), 195 (100), 153 (77), 125 (34), 109 (18), 101(59), 95 (64), 77 (25). Minor isomer: MS: m/z (%) = 281 (34) [M+ - 15], 221 (18), 195 (100), 153 (77), 125 (40), 109 (21), 101 (86), 95 (98), 77 (30). Anal. Calcd for C15H20O4S: C, 60.79; H, 6.80; S, 10.82. Found: C, 60.64; H, 6.68; S, 10.61.
Acetate 9d: Yield 90%. A 70:30 mixture of two inseparable diastereoisomers: IR (neat): 1060, 1740 cm-1. Major isomer: 1H NMR (CDCl3): δ = 1.20-1.36 (m, 4 H), 1.30 (s, 3 H,), 1.34 (s, 3 H), 1.84 (s, 3 H), 3.73 (dd, 1 H, J = 6.3 Hz and J = 8.7 Hz), 4.07 (dd, 1 H, J = 6.3 Hz and J = 8.7 Hz), 4.48 (q, 1 H, J = 6.3 Hz), 4.85 (d, 1 H, J = 6.9 Hz), 7.47-7.70 (m, 5 H). Minor isomer: 1H NMR (CDCl3): δ = 1.20-1.36 (m, 4 H), 1.28, (s, 3 H), 1.32 (s, 3 H), 1.83 (s, 3 H), 3.78 (dd, 1 H, J = 6.3 Hz and J = 8.7 Hz), 4.02 (dd, 1 H, J = 6.3 Hz and J = 8.7 Hz), 4.39 (q, 1 H, J = 6.3 Hz), 5.03 (d, 1 H, J = 6.3 Hz), 7.47-7.70 (m, 5 H). MS (identical for the two isomers): m/z (%) = 323 (7) [M+ - 15], 281 (6), 207 (43), 191 (12), 153 (27), 125 (13), 95 (59), 43 (100). Anal. Calcd for C17H22O5S: C, 60.34; H, 6.55; S, 9.47. Found: C, 60.44; H, 6.78; S, 9.61.
Methylcyclopropilidene 15b: Colorless oil. Yield 65%. Data worked out from the unseparable 60:40 E/Z-mixture: 1H NMR (CDCl3): δ = 1.05-1.12 (m, 2 H), 1.63-1.70 (m, 2 H), 1.76-1.80 (m, 3 H, E-isomer), 1.84-1.89 (m, 3 H, Z-isomer), 2.29 (s, 3 H, Z-isomer), 2.30 (s, 3 H, E-isomer), 2.52-2.55 (m, 2 H), 5.91-5.95 (m, 2 H), 6.98-7.08 (m, 8 H). 13C NMR (CDCl3): δ = 13.3, 15.0, 16.8, 17.0, 19.2, 19.7, 19.8, 20.9, 21.0, 114.3, 114.5, 126.1, 126.3, 128.9, 129.0, 135.0, 135.1, 139.2, 139.5. MS (identical for the two isomers): m/z (%) = 158 (12) [M+], 143 (100), 128 (65), 115 (25), 91 (7), 77 (12). Anal. Calcd for C12H14: C, 91.08; H, 8.92. Found: C, 91.15; H, 8.98.
Compound 16b: A 50:50 mixture of two E-diastereoisomers (syn + anti). Colorless oil. Yield 20%. IR (neat): 3400 cm-1. anti-Diastereoisomer: 1H NMR (CDCl3): δ = 0.85-0.90 (m, 2 H), 1.24-1.26 (m, 1 H), 1.34 (d, 3 H, J = 5.7 Hz), 1.57 (br s, 1 H), 1.75-1.78 (m, 1 H), 2.30 (s, 3 H), 3.36 (q, 1 H, J = 5.7 Hz), 6.95-7.08 (m, 4 H). 13C NMR (CDCl3): δ = 13.6, 20.9, 22.7, 30.6, 71.9, 76.6, 125.8, 129.0, 135.2, 139.3. syn-Diastereoisomer: 1H NMR (CDCl3): δ = 0.91-0.98 (m, 2 H), 1.20-1.22 (m, 1 H), 1.32 (d, 3 H, J = 5.7 Hz), 1.57 (br s, 1 H), 1.84-1.92 (m, 1 H), 2.30 (s, 3 H), 3.34 (q, 1 H, J = 5.7 Hz), 6.95-7.08 (m, 4 H). 13C NMR (CDCl3): δ = 13.1, 20.4, 22.3, 30.6, 71.9, 76.6, 125.7, 129.0, 135.1, 139.4. MS (identical for the two isomers): m/z (%) = 176 (5) [M+], 143 (21), 131 (40), 121 (96), 117 (100), 91 (55), 77 (20). Anal. Calcd for C12H16O: C, 81.77; H, 9.15. Found: C, 81.65; H, 8.86.