Int J Sports Med 2005; 26(3): 208-213
DOI: 10.1055/s-2004-820958
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Validity and Reliability of the FitSense FS-1 Speedometer During Walking and Running

S. A. Conger1 , S. J. Strath1 , D. R. Bassett Jr1
  • 1Department of Health and Exercise Science, University of Tennessee, Knoxville, TN, USA
Further Information

Publication History

Accepted after revision: March 1, 2004

Publication Date:
26 August 2004 (online)

Abstract

This study examined the criterion-related validity and the reliability of the FitSense FS-1 Speedometer for estimating distance, speed, and energy expenditure (EE) during walking and running. The study was divided into two parts. Part I investigated the validity and the reliability of the FitSense for estimating distance while walking and running around a 400-m track (n = 24). Part II looked at the validity of the FitSense for estimating speed and EE during level treadmill walking (4.8, 6.4, and 8.0 km · h-1) and running (8.0, 9.6, and 11.2 km · h-1). Twelve of the original 24 subjects completed Part II. The results of Part I indicated that the FitSense accurately estimated walking distance, but it underestimated running distance by an average of 3.5 % (p = 0.016). Test-retest reliability was deemed adequate for both walking and running distance (ICC = 0.87 and 0.84, respectively). In Part II, the FitSense overestimated speed during treadmill walking at 8.0 km · h-1 (p < 0.001) and underestimated EE at two walking speeds (6.4 and 8.0 km · h-1) (p < 0.01). No significant differences were found for speed or EE predictions while running at any speed. In summary, the FitSense FS-1 Speedometer provided valid estimates of walking distance during track tests, and valid estimates of speed during treadmill walking (4.8 and 6.4 km · h-1) and running (9.6 and 11.2 km · h-1). However, the FitSense underestimated running distance during track tests. In addition, the FitSense overestimated speed and underestimated EE in the transition between walking and running (8.0 km · h-1).

References

  • 1 Balogun J A, Martin D A, Clendenin M A. Calorimetric validation of the Caltrac accelerometer during level walking.  Phys Ther. 1989;  69 501-509
  • 2 Bassett Jr D R, Ainsworth B E, Leggett S R, Mathien C A, Main J A, Hunter D C, Duncan G E. Accuracy of five electronic pedometers for measuring distance walked.  Med Sci Sports Exerc. 1996;  28 1071-1077
  • 3 Bassett Jr D R, Howley E T, Thompson D L, King G A, Strath S J, McLaughlin J E, Parr B B. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system.  J Appl Physiol. 2001;  91 218-224
  • 4 Brage S, Wedderkopp N, Franks P W, Anderson L J, Froberg K. Reexamination of validity and reliability of the CSA monitor in walking and running.  Med Sci Sports Exerc. 2003;  35 1447-1454
  • 5 Daniels J, Bradley P, Scardina N, Handel P V, Troup J. Aerobic responses to submax and max treadmill and track running at sea level and altitude.  Med Sci Sports Exerc. 1985;  17 187
  • 6 Davies C TM. Effects of wind assistence and resistance on the forward motion of a runner.  J Appl Physiol. 1980;  48 702-709
  • 7 FitSense .FitSense FS-1 Speedometer Athlete's Manual. Wellesley Hills, MA; FitSense 2000: 1-24
  • 8 Haymes E M, Byrnes W C. Walking and running energy expenditure estimated by Caltrac and indirect calorimetry.  Med Sci Sports Exerc. 1993;  25 1365-1369
  • 9 Herren R, Sparti A, Aminian K, Schultz Y. The prediction of speed and incline in outdoor running in humans using accelerometry.  Med Sci Sports Exerc. 1999;  31 1053-1059
  • 10 Jakicic J M, Winters C, Lagally K, Ho J, Robertson R J, Wing R R. The accuracy of the TriTrac-R3 D accelerometer to estimate energy expenditure.  Med Sci Sports Exerc. 1999;  31 747-754
  • 11 Janz K F. Validation of the CSA accelerometer for assessing children's physical activity.  Med Sci Sports Exerc. 1994;  26 369-375
  • 12 Kemper H CG, Verschuur R. Validity and reliability of pedometers in habitual activity research.  Eur J Appl Physiol. 1977;  37 71-82
  • 13 Kram R, Taylor C R. Energetics of running: a new perspective.  Nature. 1990;  346 265-267
  • 14 Melanson Jr E L, Freedson P S. Validity of the Computer Science and Application, Inc. (CSA) activity monitor.  Med Sci Sports Exerc. 1995;  27 934-940
  • 15 Montoye H J, Washburn R, Servais S, Ertl A, Webster J G, Nagle F J. Estimation of energy expenditure by a portable accelerometer.  Med Sci Sports Exerc. 1983;  15 403-407
  • 16 Nichols J F, Morgan C G, Chabot L E, Sallis J F, Calfas K J. Assessment of physical activity with the Computer Science and Applications, Inc., accelerometer: laboratory versus field validation.  Res Q Exerc Sport. 2000;  71 36-43
  • 17 Nichols J F, Morgan C G, Sarkin J A, Sallis J F, Calfas K J. Validity, reliability, and calibration of the Tritrac accelerometer as a measure of physical activity.  Med Sci Sports Exerc. 1999;  31 908-912
  • 18 Pambianco G, Wing R R, Robertson R. Accuracy and reliability of the Caltrac accelerometer for estimating energy expenditure.  Med Sci Sports Exerc. 1990;  22 858-862
  • 19 Roza A M, Shizgal H M. The Harris Benedict equation reevaluated: resting energy requirements and the body mass cell.  Am J Clin Nutr. 1984;  40 168-182
  • 20 Saris W HM, Binkhorst R A. The use of pedometer and actometer in studying daily physical activity in man. Part I: reliability of pedometer and actometer.  Eur J Appl Physiol. 1977;  37 219-228
  • 21 Servais S B, Webster J G, Montoye H J. Estimating human energy expenditure using an accelerometer device.  J Clin Eng. 1984;  9 159-173
  • 22 Taylor C R. Force development during sustained locomotion: a determinant of gait, speed and metabolic power.  J Exp Biol. 1985;  115 253-262
  • 23 Washburn R, Chin M K, Montoye H J. Accuracy of pedometer in walking and running.  Res Q Exerc Sport. 1980;  51 695-702
  • 24 Weir J BDV. New methods for calculating metabolic rate with special reference to protein metabolism.  J Physiol (Lond). 1949;  109 1-9
  • 25 Weyand P G, Kelly M, Blackadar T, Darley J C, Oliver S R, Ohlenbusch N E, Joffe S W, Hoyt R W. Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans.  J Appl Physiol. 2001;  91 451-458

S. A. Conger

University of Arkansas for Medical Sciences, Nutrition, Metabolism, and Exercise Laboratory

4301 West Markham St., #806

Little Rock, AR 72205-7199

USA

Phone: + 5015265713

Fax: + 50 15 26 57 10

Email: saconger@uams.edu