Aktuelle Urol 2004; 35(4): 326-330
DOI: 10.1055/s-2004-818510
Klinische Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Adaptive Immuntherapie des fortgeschrittenen Prostatakarzinoms - Cancer Testis Antigene (CTA) als mögliche Zielantigene

Adaptive Immunotherapy of the Advanced Prostate Cancer - Cancer Testis Antigen (CTA) as Possible Target AntigensL.  Prikler1 , E.  Scandella2 , Y.  Men2 , D.  S.  Engeler1 , P.-A.  Diener4 , S.  Gillessen3 , B.  Ludewig2 , H.-P.  Schmid1
  • 1Klinik für Urologie, CH-St. Gallen
  • 2Laborforschungsabteilung, CH-St. Gallen
  • 3Klinik für Onkologie, CH-St. Gallen
  • 4Institut für Pathologie, Kantonsspital CH-St. Gallen
Further Information

Publication History

Publication Date:
27 August 2004 (online)

Zusammenfassung

Das Prostatakarzinom (PCa) wie auch andere Tumoren exprimieren Antigene, die als Angriffspunkte für eine spezifische Immuntherapie dienen können. Spezielle antigenpräsentierende Zellen (z. B. dendritische Zellen) bieten dabei dem Immunsystem die Antigene an, so dass eine entsprechende Antwort ausgelöst wird. Sehr effektiv gehen dabei zytotoxische T-Zellen (sog. Killerzellen) gegen die Antigene und somit gegen das entsprechende Gewebe respektive den Tumor vor. Cancer Testis Antigene (CTA) werden in verschiedenen menschlichen Karzinomen exprimiert, außer im Hoden aber nicht in normalem Gewebe. Sie eignen sich damit ideal für eine spezifische Tumor-Immuntherapie. Wir untersuchten, ob einige dieser CTA (LAGE-1, PRAME, MAGE-C2, NY-ESO-1, SSX-2 und PAGE4) auch im Prostatakarzinom vorkommen. Dabei zeigte sich eine sehr heterogene Expression der CTA in verschiedenen PCa-Zelllinien oder PCa-Proben aus unserem Patientengut. Nur PAGE4 wies neben einer Expression in primären PCa und LnCaP-Zellen auch eine Expression in hormonabhängigen und -refraktären PCa-Proben auf, so dass es als mögliches Zielantigen zur Immuntherapie des PCa weiter evaluiert wird.

Abstract

Prostate cancer (PCa) like other tumors expresses antigens that may serve as target for specific immunotherapy. Special antigen-presenting cells (e. g., dendritic cells) are capable of generating tumor-specific immunity. Cytotoxic T-cells (killer cells) are very effective against antigens and, consequently, against the respective tissue or tumor. Cancer testis antigens (CTA) are expressed in various human cancers but, aside from the testicles, not in normal tissue. Therefore, they are suitable for a specific tumor immunotherapy. We looked at different CTA (LAGE-1, PRAME, MAGE-C2, NY-ESO-1, SSX-2 and PAGE4) and their occurrence in prostatic cancer. Expression of CTA in various PCa cell lines and PCa material from patients was very heterogeneous. Only PAGE4 was expressed in primary PCa and in LnCaP cells as well as in hormone-dependent and hormone-refractory PCa probes. We conclude that PAGE4 should be further evaluated as a potential target for immunotherapy of PCa.

Literatur

  • 1 Ashley D M, Faiola B, Nair S, Hale L P, Bigner D D, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors.  J Exp Med. 1997;  186 (7) 1177-1182
  • 2 Austyn J M, Hankins D F, Larsen C P, Morris P J, Rao A S, Roake J A. Isolation and characterization of dendritic cells from mouse heart and kidney.  J Immunol. 1994;  152 (5) 2401-2410
  • 3 Banchereau J, Steinman R M. Dendritic cells and the control of immunity.  Nature. 1998;  392 (6673) 245-252
  • 4 Banchereau J, Schuler-Thurner B, Palucka A K, Schuler G. Dendritic cells as vectors for therapy.  Cell. 2001;  106 (3) 271-274
  • 5 Boczkowski D, Nair S K, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo.  J Exp Med. 1996;  184 (2) 465-472
  • 6 Brinkmann U, Vasmatzis G, Lee B, Yerushalmi N, Essand M, Pastan I. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus.  Proc Natl Acad Sci U S A. 1998;  95 (18) 10 757-10 762
  • 7 Brossart P, Zobywalski A, Grunebach F, Behnke L, Stuhler G, Reichardt V L, Kanz L, Brugger W. Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells.  Cancer Res. 2000;  60 (16) 4485-4492
  • 8 Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells.  Nature. 1997;  388 (6644) 782-787
  • 9 Dannull J, Diener P A, Prikler L, Furstenberger G, Cerny T, Schmid U, Ackermann D K, Groettrup M. Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer.  Cancer Res. 2000;  60 (19) 5522-5528
  • 10 Dutoit V, Taub R N, Papadopoulos K P, Talbot S, Keohan M L, Brehm M, Gnjatic S, Harris P E, Bisikirska B, Guillaume P. et al . Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting.  J Clin Invest. 2002;  110 (12) 1813-1822
  • 11 Eder J P, Kantoff P W, Roper K, Xu G X, Bubley G J, Boyden J, Gritz L, Mazzara G, Oh W K, Arlen P. et al . A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer.  Clin Cancer Res. 2000;  6 (5) 1632-1638
  • 12 Flamand V, Sornasse T, Thielemans K, Demanet C, Bakkus M, Bazin H, Tielemans F, Leo O, Urbain J, Moser M. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo.  Eur J Immunol. 1994;  24 (3) 605-610
  • 13 Fong L, Engleman E G. Dendritic cells in cancer immunotherapy.  Annu Rev Immunol. 2000;  18 245-273
  • 14 Hsu F J, Benike C, Fagnoni F, Liles T M, Czerwinski D, Taidi B, Engleman E G, Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.  Nat Med. 1996;  2 (1) 52-58
  • 15 Iavarone C, Wolfgang C, Kumar V, Duray P, Willingham M, Pastan I, Bera T K. PAGE4 is a cytoplasmic protein that is expressed in normal prostate and in prostate cancers.  Mol Cancer Ther. 2002;  1 (5) 329-335
  • 16 La Motte R N, Sharpe A H, Bluestone J A, Mokyr M B. Host B7 - 1 and B7 - 2 costimulatory molecules contribute to the eradication of B7 - 1-transfected P815 tumor cells via a CD8+ T cell-dependent mechanism.  J Immunol. 1999;  162 (8) 4817-4823
  • 17 Ludewig B, McCoy K, Pericin M, Ochsenbein A F, Dumrese T, Odermatt B, Toes R E, Melief C J, Hengartner H, Zinkernagel R M. Rapid peptide turnover and inefficient presentation of exogenous antigen critically limit the activation of self-reactive CTL by dendritic cells.  J Immunol. 2001;  166 (6) 3678-3687
  • 18 Mach N, Dranoff G. Cytokine-secreting tumor cell vaccines.  Curr Opin Immunol. 2000;  12 (5) 571-575
  • 19 Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman H T. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial.  Eur Urol. 2000;  38 (2) 208-217
  • 20 Morant R, Hsu Schmitz S F, Bernhard J, Thurlimann B, Borner M, Wernli M, Egli F, Forrer P, Streit A, Jacky E. et al . Vinorelbine in androgen-independent metastatic prostatic carcinoma - a phase II study.  Eur J Cancer. 2002;  38 (12) 1626-1632
  • 21 Muller S, Hanisch F G. Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. High density and prevalent core 2-based glycosylation.  J Biol Chem. 2002;  277 (29) 26 103-26 112
  • 22 Nair S K, Boczkowski D, Morse M, Cumming R I, Lyerly H K, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA.  Nat Biotechnol. 1998;  16 (4) 364-369
  • 23 Nestle F O, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.  Nat Med. 1998;  4 (3) 328-332
  • 24 Nestle F O. Dendritic cell vaccination for cancer therapy.  Oncogene. 2000;  19 (56) 6673-6679
  • 25 Ochsenbein A F, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel R M. Immune surveillance against a solid tumor fails because of immunological ignorance.  Proc Natl Acad Sci U S A. 1999;  96 (5) 2233-2238
  • 26 Ochsenbein A F, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel R M. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction.  Nature. 2001;  411 (6841) 1058-1064
  • 27 Ossevoort M A, Feltkamp M C, Veen K J van, Melief C J, Kast W M. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor.  J Immunother Emphasis Tumor Immunol. 1995;  18 (2) 86-94
  • 28 Pantuck A J vOA, Gitlitz B J. et al . MUC-1-IL-2 gene therapy for advanced prostate cancer: phase I trial and clinical response associated systemic immune activation (abstract).  J Urol. 2000;  163(suppl) 158
  • 29 Pardoll D M. Cancer vaccines.  Nat Med. 1998;  4 (5 Suppl) 525-531
  • 30 Pardoll D M. Spinning molecular immunology into successful immunotherapy.  Nat Rev Immunol. 2002;  2 (4) 227-238
  • 31 Pierre P, Turley S J, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman R M, Mellman I. Developmental regulation of MHC class II transport in mouse dendritic cells.  Nature. 1997;  388 (6644) 787-792
  • 32 Rea D, Havenga M J, Assem M van Den, Sutmuller R P, Lemckert A, Hoeben R C, Bout A, Melief C J, Offringa R. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells.  J Immunol. 2001;  166 (8) 5236-5244
  • 33 Reis e Sousa C, Stahl P D, Austyn J M. Phagocytosis of antigens by Langerhans cells in vitro.  J Exp Med. 1993;  178 (2) 509-519
  • 34 Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone A M, Fathman C G, Inaba K, Steinman R M. Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells.  J Exp Med. 1989;  169 (3) 1169-1178
  • 35 Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch P O, Steinman R M, Schuler G. Proliferating dendritic cell progenitors in human blood.  J Exp Med. 1994;  180 (1) 83-93
  • 36 Rosenberg S A, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.  Science. 1986;  233 (4770) 1318-1321
  • 37 Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K. et al . Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.  Clin Cancer Res. 2001;  7 (8) 2277-2284
  • 38 Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.  J Exp Med. 1994;  179 (4) 1109-1118
  • 39 Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.  J Exp Med. 1995;  182 (2) 389-400
  • 40 Sanda M G, Ayyagari S R, Jaffee E M, Epstein J I, Clift S L, Cohen L K, Dranoff G, Pardoll D M, Mulligan R C, Simons J W. Demonstration of a rational strategy for human prostate cancer gene therapy.  J Urol. 1994;  151 (3) 622-628
  • 41 Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy.  Immunol Rev. 2002;  188 22-32
  • 42 Scholfield D P, Simms M S, Bishop M C. MUC1 mucin in urological malignancy.  BJU Int. 2003;  91 (6) 560-566
  • 43 Simons J W, Mikhak B, Chang J F, DeMarzo A M, Carducci M A, Lim M, Weber C E, Baccala A A, Goemann M A, Clift S M. et al . Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer.  Cancer Res. 1999;  59 (20) 5160-5168
  • 44 Slingluff C L. Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms.  Cancer Immunol Immunother. 1999;  48 (7) 371-373
  • 45 Song W, Kong H L, Carpenter H, Torii H, Granstein R, Rafii S, Moore M A, Crystal R G. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity.  J Exp Med. 1997;  186 (8) 1247-1256
  • 46 Specht J M, Wang G, Do M T, Lam J S, Royal R E, Reeves M E, Rosenberg S A, Hwu P. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases.  J Exp Med. 1997;  186 (8) 1213-1221
  • 47 Steinman R M, Pope M. Exploiting dendritic cells to improve vaccine efficacy.  J Clin Invest. 2002;  109 (12) 1519-1526
  • 48 Wang R F, Rosenberg S A. Human tumor antigens for cancer vaccine development.  Immunol Rev. 1999;  170 85-100
  • 49 Wick M, Dubey P, Koeppen H, Siegel C T, Fields P E, Chen L, Bluestone J A, Schreiber H. Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy.  J Exp Med. 1997;  186 (2) 229-238
  • 50 Zinkernagel R M, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity.  Immunol Rev. 1997;  156 199-209
  • 51 Zitvogel L, Mayordomo J I, Tjandrawan T, DeLeo A B, Clarke M R, Lotze M T, Storkus W J. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines.  J Exp Med. 1996;  183 (1) 87-97

Dr. med. Ladislav Prikler

Klinik für Urologie · Kantonsspital

CH-9007 St. Gallen

Email: ladislav.prikler@kssg.ch

    >