Handchir Mikrochir Plast Chir 2004; 36(2/03): 75-84
DOI: 10.1055/s-2004-817926
Original Article

Georg Thieme Verlag KG Stuttgart · New York

An Introduction to Congenital Hand Anomalies

Angeborene Handfehlbildungen - Eine EinführungM. A. Tonkin1
  • 1University of Sydney, Department of Hand Surgery and Peripheral Nerve Surgery, Royal North Shore Hospital, Sydney, Australia
Weitere Informationen

Publikationsverlauf

Received: August 27, 2003

Accepted: September 17, 2003

Publikationsdatum:
26. Mai 2004 (online)

Zusammenfassung

Das Ziel dieser Einführung ist es, eine Grundlage zu bilden, von der aus die folgenden Arbeiten die Details des Managements spezifischer Fehlbildungen abhandeln können. Ein Basiswissen über den Prozess der Gliedmaßenentwicklung und die Einbeziehung unseres gegenwärtigen Wissensstandes über die Ursachen abnormer Gliedmaßenentwicklungen sind notwendig, um dem Chirurgen bei der Erklärung, wie und warum ein Kind Gliedmaßenanomalien hat, zu unterstützen. Zweifellos ist es dieses Wissen, das sowohl die Prävention als auch das Management in der Zukunft bestimmen wird. Einige Worte über die Klassifikation sind angebracht. Dies ist immer ein umstrittenes Unterfangen, da Klassifikationen nicht immer exakt zu den Entstehungsursachen in Bezug gesetzt werden können, aber notwendig sind, um denen, die auf diesem Gebiet arbeiten, zu ermöglichen, dieselbe Sprache zu sprechen und einander zu verstehen. Abschließend möchte ich in groben Zügen eine Philosophie darstellen, auf der sowohl die Indikationen als auch das Timing für chirurgische Interventionen basieren.

Abstract

The intention of this introduction is to provide a platform from which ensuing articles may deal with the details of management of specific entities. A basic knowledge of the process of limb development and an appreciation of our current knowledge of the causations of abnormal limb development are necessary to assist the surgeon in explanation as to how and why the child has the limb anomaly. Undoubtedly it is from this knowledge that prevention and improved management will evolve in the future. Some words about classification are appropriate. This is always a contentious issue, as classification cannot currently be precisely related to causation but is necessary such that those working in the field can speak in one language and understand each other. Finally, I will outline a philosophy on which to base both indications for, and timing of surgical intervention.

References

  • 1 Blauth W. Der hypoplastische Daumen.  Arch Orthop Unfallchir. 1967;  62 225-246
  • 2 Chen H, Lun Y, Ovchinnikov D. et al . Limb and kidney defects in Lmx 1b mutant mice suggest an involvement of LMX1B in human nail-patella syndrome.  Nat Genet. 1998;  19 51-55
  • 3 Congenital Hand Committee of the JSSH . Modified IFSSH Classification.  J Jap Soc Surg Hand. 2000;  17 353-365
  • 4 Daluiski A, Yi S E, Lyons K M. The molecular control of upper extremity development: implications for congenital hand anomalies.  J Hand Surg [Am]. 2001;  26 8-22
  • 5 Dreyer S D, Zhou G, Baldini A. et al . Mutations in LMX1 B cause abnormal skeletal patterning and renal dysplasia in nail-patella syndrome.  Nat Genet. 1998;  19 47-50
  • 6 Dudley A T, Lyons K M, Robertson E J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye.  Genes Dev. 1995;  9 2795-2807
  • 7 Faiyaz-ul-Haque M, Uhlhaas S, Knapp M. et al . Mapping of the gene for X-chromosomal split hand/split foot anomaly to Xq26-26. 1.  Hum Genet. 1993;  91 17-19
  • 8 Fallon J F, López A, Ros M A, Savage M P, Olwin B B, Simandl B K. FGF-2: apical ectodermal ridge growth signal for chick limb development.  Science. 1994;  264 104-107
  • 9 Flatt A E. The Care of Congenital Hand Anomalies. St.  Louis; Quality Medical Publishing 1994
  • 10 Heutink P, Zguricas J, van Oosterhout L, Breedveld G J, Testers L, Sandkuijl L A, Snijders P JLM, Weissenbach J, Lindhout D, Hovius S ER, Oostra B A. The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q.  Nature Genet. 1994;  6 287-292
  • 11 Johnson R L, Tabin C. Molecular models for vertebrate limb development.  Cell. 1997;  90 979-990
  • 12 Laufer F, Nelson C E, Johnson R L, Morgan B A, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud.  Cell. 1994;  79 993-1003
  • 13 Manske P R, Halikis M N. Surgical classification of central deficiency according to the thumb web.  J Hand Surg [Am]. 1995;  20 687-697
  • 14 Miura T. Syndactyly and split hand.  The Hand. 1976;  8 125-130
  • 15 Mortlock D P, Post L C, Innis J W. The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation.  Nat Genet. 1996;  13 284-289
  • 16 Muragaki Y, Mundlos S, Upton J, Olsen B R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13.  Science. 1996;  272 548-551
  • 17 Nelson C D, Morgan B A, Burke A C. et al . Analysis of Hox gene expression in the chick limb bud.  Development. 1996;  122 1449-1466
  • 18 Niswander L, Jeffrey S, Martin G R, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb.  Nature. 1994;  371 609-612
  • 19 Niswander L, Martin G R. FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse.  Development. 1992;  114 755-768
  • 20 Niswander L, Tickle C, Vogel A, Booth I, Martin G R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb.  Cell. 1993;  75 579-587
  • 21 Nunes M E, Schutt G, Kapur R P, Luthardt F, Kukolich M, Byers P, Evans J P. A second autosomal split hand/split foot locus maps to chromosome 10 q24-q25.  Hum Molec Genet. 1995;  4 2165-2170
  • 22 Ogino T. Teratogenic relationship between polydactyly, syndactyly and cleft hand.  J Hand Surg [Br]. 1990;  15 201-209
  • 23 Parr B A, McMahon A P. Dorsalizing signal Wnt-7 a required for normal polarity of D-V and A-P axes of mouse limb.  Nature. 1995;  374 350-353
  • 24 Polymeropoulos M H, Ide S E, Magyari T, Francomano C A. Brachydactyly type C gene maps to human chromosome 12q24.  Genomics. 1996;  38 45-50
  • 25 Riddle R D, Ensini M, Nelson C, Tsuchida T, Jessell T M, Tabin C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb.  Cell. 1995;  83 631-640
  • 26 Riddle R D, Johnson R L, Laufer B, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA.  Cell. 1993;  75 1401-1416
  • 27 Riddle R D, Tabin C J. How limbs develop.  Sci Am. 1999;  280 74-77
  • 28 Scherer S W, Poorkaj P, Allen T. et al . Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7, band q21. 3-q22. 1.  Am J Hum Genet. 1994;  55 12-20
  • 29 Swanson A B, Swanson de G G, Taka K. A classification for congenital limb malformation.  J Hand Surg. 1983;  8 693-702
  • 30 Tabin C J. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development.  Cell. 1991;  66 199-217
  • 31 Tabin C J. Why we have (only) five fingers per hand: Hox genes and the evolution of paired limbs.  Development. 1992;  116 289-296
  • 32 Tickle C. Molecular basis of limb development.  Biochem Soc Trans. 1994;  22 565-569
  • 33 Tickle C. Genetics and limb development.  Dev Genet. 1996;  19 1-8
  • 34 Tsukurov O, Boehmer A, Flynn J, Nicolai J P, Hamel B CJ, Traill S, Zaleske D, Mankin H J, Yeon H, Ho C, Tabin C, Seidman J G, Seidman C. A complex bilateral polysyndactyly disease locus maps to chromosome 7q36.  Nature Genet. 1994;  6 282-286
  • 35 Vogel A, Rodriguez C, Izpisua-Belmonte J C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb.  Development. 1996;  122 1737-1750
  • 36 Wassel H D. The results of surgery for polydactyly of the thumb. A review.  Clin Orthop. 1969;  64 175-193
  • 37 Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning.  Cell. 1995;  80 939-947
  • 38 Zákány J, Fromental-Ramain C, Warot X, Duboule D. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.  Proc Natl Acad Sci USA. 1997;  94 13695-13700
  • 39 Zguricas J, Bakker W F, Heus H, Lindhout D, Heutink P, Hovius S ER. Genetics of limb development and congenital hand malformations.  Plast Reconstr Surg. 1998;  101 1126-1135

Prof. Michael A. Tonkin

Department of Hand Surgery and Peripheral Nerve Surgery
Royal North Shore Hospital

St Leonards, NSW 2065

Australia

eMail: mtonkin@surgery.usyd.edu.au