Abstract
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a crucial role in converting hormonally active cortisol into inactive cortisone, conferring specificity onto the human mineralocorticoid receptor (MR). Progesterone binds with even higher affinity to the MR, but acts as an MR antagonist. How aldosterone is able to keep its function as predominant MR ligand in clinical situations with high progesterone concentrations, such as pregnancy, is not clear. We have shown in vitro that the human kidney possesses an effective enzyme system that metabolizes progesterone to inactive metabolites in a process similar to the inactivation of cortisol by 11β-HSD2. In studies on patients with adrenal insufficiency, we have shown that the in vivo anti-mineralocorticoid activity of progesterone is diminished by inactivating metabolism of progesterone, local formation of the deoxycorticosterone mineralocorticoid from progesterone, and inhibition of 11β-HSD2 by progesterone and its metabolites resulting in decreased inactivation of cortisol and hence increased MR binding by cortisol. The enzymes involved in progesterone metabolism are also responsible for the capability of the human kidney to convert pregnenolone to DHEA and androstenedione leading to the formation of active androgens, testosterone and 5α-DH-testosterone. Locally produced androgens might be responsible for the observed difference in blood pressure between men and women and higher susceptibility to hypertension in men.
Key words
Progesterone - Androgens - Human kidney - Hypertension
References
1
Stockand J D.
New ideas about aldosterone signaling in epithelia.
Am J Physiol Renal Physiol.
2002;
282
F559-F576
2
Arriza J L, Weinberger C, Cerelli G, Glaser T M, Handelin B L, Housman D E, Evans R M.
Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor.
Science.
1987;
237
268-275
3
Funder J W, Pearce P T, Smith R, Smith A I.
Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated.
Science.
1988;
242
583-585
4
Edwards C R, Stewart P M, Burt D, Brett L, McIntyre M A, Sutanto W S, de Kloet E R, Monder C.
Localisation of 11 beta-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor.
Lancet.
1988;
2
986-989
5
Quinkler M, Oelkers W, Diederich S.
Clinical implications of glucocorticoid metabolism by 11beta-hydroxysteroid dehydrogenases in target tissues.
Eur J Endocrinol.
2001;
144
87-97
6
Walker E A, Stewart P M.
11beta-hydroxysteroid dehydrogenase: unexpected connections.
Trends Endocrinol Metab.
2003;
14
334-339
7
New M I, Levine L S, Biglieri E G, Pareira J, Ulick S.
Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension.
J Clin Endocrinol Metab.
1977;
44
924-933
8
Werder E, Zachmann M, Vollmin J A, Veyrat R, Prader A.
Unusual steroid excretion in a child with low renin hypertension.
Research in steroids.
1974;
6
385-389
9
Stewart P M, Corrie J E, Shackleton C H, Edwards C R.
Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle.
J Clin Invest.
1988;
82
340-349
10
Stewart P M, Krozowski Z.
11beta-hydroxysteroid dehydrogenase.
Vitamins and Hormones.
1999;
57
249-324
11
Quinkler M, Stewart P M.
Hypertension and the cortisol-cortisone shuttle.
J Clin Endocrinol Metab.
2003;
88
2384-2392
12
Oelkers W K.
Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure.
Steroids.
1996;
61
166-171
13
Murakami T, Watanabe Ogura E, Tanaka Y, Yamamoto M.
High blood pressure lowered by pregnancy.
Lancet.
2000;
356
1980
14
Rupprecht R, Reul J M, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F, Damm K.
Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands.
Eur J Pharmacol.
1993;
247
145-154
15
Souque A, Fagart J, Couette B, Davioud E, Sobrio F, Marquet A, Rafestin Oblin ME.
The mineralocorticoid activity of progesterone derivatives depends on the nature of the C18 substituent.
Endocrinology.
1995;
136
5651-5658
16
Johansson E D, Jonasson L E.
Progesterone levels in amniotic fluid and plasma from women. I. Levels during normal pregnancy.
Acta Obstet Gynecol Scand.
1971;
50
339-343
17
Rosenthal H E, Slaunwhite W R , Sandberg A A.
Transcortin: a corticosteroid-binding protein of plasma. X. Cortisol and progesterone interplay and unbound levels of these steroids in pregnancy.
J Clin Endocrinol Metab.
1969;
29
352-367
18
Nolten W E, Lindheimer M D, Oparil S, Ehrlich E N.
Desoxycorticosterone in normal pregnancy. I. Sequential studies of the secretory patterns of desoxycorticosterone, aldosterone, and cortisol.
Am J Obstet Gynecol.
1978;
132
414-420
19
Quinkler M, Johanssen S, Grossmann C, Bähr V, Müller M, Oelkers W, Diederich S.
Progesterone metabolism in the human kidney and inhibition of 11beta-hydroxysteroid dehydrogenase type 2 by progesterone and its metabolites.
J Clin Endocr Metabol.
1999;
84
4165-4171
20
Quinkler M, Johanssen S, Bumke-Vogt C, Oelkers W, Bahr V, Diederich S.
Enzyme-mediated protection of the mineralocorticoid receptor against progesterone in the human kidney.
Mol Cell Endocrinol.
2001;
171
21-24
21
Quinkler M, Meyer B, Bumke-Vogt C, Grossmann C, Gruber U, Oelkers W, Diederich S, Bahr V.
Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor.
Eur J Endocrinol.
2002;
146
789-799
22
Laidlaw J C, Ruse J L, Gornall A G.
The influence of estrogen and progesterone on aldosterone excretion.
J Clin Endocr Metabol.
1962;
22
161-171
23
Landau R L, Bergenstal D M, Lugibihl K, Kascht M E.
The metabolic effects of progesterone in man.
J Clin Endocrinol Metab.
1955;
15
1194-1215
24
Landau R L, Lugibihl K, Bergenstal D M, Dimick D F.
The metabolic effects of progesterone in man: Dose response relationships.
J Lab Clin Med.
1957;
50
613-620
25
Landau R L, Lugibihl K.
Inhibition of the sodium-retaining influence of aldosterone by progesterone.
J Clin Endocrinol Metab.
1958;
18
1237-1245
26
Oparil S, Ehrlich E N, Lindheimer M D.
Effect of progesterone on renal sodium handling in man: relation to aldosterone excretion and plasma renin activity.
Clin Sci Mol Med.
1975;
49
139-147
27
Oelkers W, Schöneshöfer M, Blümel A.
Effects of progesterone and four synthetic progestagens on sodium balance and the renin-aldosterone system in man.
J Clin Endocrinol Metab.
1974;
39
882-890
28
Quinkler M, Meyer B, Oelkers W, Diederich S.
Renal inactivation, mineralocorticoid generation, and 11beta-hydroxysteroid dehydrogenase inhibition ameliorate the antimineralocorticoid effect of progesterone in vivo.
J Clin Endocrinol Metab.
2003;
88
3767-3772
29
Burt V L, Whelton P, Roccella E J, Brown C, Cutler J A, Higgins M, Horan M J, Labarthe D.
Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988 - 1991.
Hypertension.
1995;
25
305-313
30
Stamler R, Stamler J, Riedlinger W F, Algera G, Roberts R H.
Weight and blood pressure. Findings in hypertension screening of 1 million Americans.
JAMA.
1978;
240
1607-1610
31
Bachmann J, Feldmer M, Ganten U, Stock G, Ganten D.
Sexual dimorphism of blood pressure: possible role of the renin-angiotensin system.
J Steroid Biochem Mol Biol.
1991;
40
511-515
32
Harshfield G A, Alpert B S, Pulliam D A, Somes G W, Wilson D K.
Ambulatory blood pressure recordings in children and adolescents.
Pediatrics.
1994;
94
180-184
33
August P.
Hypertension in men.
J Clin Endocrinol Metab.
1999;
84
3451-3454
34
Reckelhoff J F, Zhang H, Srivastava K, Granger J P.
Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor.
Hypertension.
1999;
34
920-923
35
Reckelhoff J F, Granger J P.
Role of androgens in mediating hypertension and renal injury.
Clin Exp Pharmacol Physiol.
1999;
26
127-131
36
Ding Y, Sigmund C D.
Androgen-dependent regulation of human angiotensinogen expression in KAP-hAGT transgenic mice.
Am J Physiol Renal Physiol.
2001;
280
F54-60
37
Wilson C M, McPhaul M J.
A and B forms of the androgen receptor are expressed in a variety of human tissues.
Mol Cell Endocrinol.
1996;
120
51-57
38
Pelletier G.
Localization of androgen and estrogen receptors in rat and primate tissues.
Histol Histopathol.
2000;
15
1261-1270
39
Reckelhoff J F, Zhang H, Granger J P.
Testosterone exacerbates hypertension and reduces pressure- natriuresis in male spontaneously hypertensive rats.
Hypertension.
1998;
31
435-439
40
Brignardello E, Gallo M, Aragno M, Manti R, Tamagno E, Danni O, Boccuzzi G.
Dehydroepiandrosterone prevents lipid peroxidation and cell growth inhibition induced by high glucose concentration in cultured rat mesangial cells.
J Endocrinol.
2000;
166
401-406
41
Quinkler M, Bumke-Vogt C, Meyer B, Bahr V, Oelkers W, Diederich S.
The human kidney is a progesterone-metabolizing and androgen-producing organ.
J Clin Endocrinol Metab.
2003;
88
2803-2809
42
Bumke-Vogt C, Bahr V, Diederich S, Herrmann S M, Anagnostopoulos I, Oelkers W, Quinkler M.
Expression of the progesterone receptor and progesterone-metabolising enzymes in the female and male human kidney.
J Endocrinol.
2002;
175
349-364
43
Dunn J F, Nisula B C, Rodbard D.
Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma.
J Clin Endocrinol Metab.
1981;
53
58-68
44
Winkel C A, Simpson E R, Milewich L, MacDonald P C.
Deoxycorticosterone biosynthesis in human kidney: potential for formation of a potent mineralocorticosteroid in its site of action.
Proc Natl Acad Sci U S A.
1980;
77
7069-7073
Dr. M. Quinkler, M. D.
Division of Medical Sciences · University of Birmingham · Queen Elizabeth Hospital
Edgbaston · Birmingham B15 2TH · UK
Phone: + 44 (121) 414 2764
Fax: + 44 (121) 415 8712
Email: M.O.Quinkler@bham.ac.uk