References
1a
Janis RA.
Silver PJ.
Triggle DJ.
Adv. Drug Res.
1987,
16:
309
1b
Bossert F.
Vater W.
Med. Res. Rev.
1989,
9:
291
1c
Martin N.
Secoane C.
Quim. Ind.
1990,
36:
115
1d
Stout DM.
Meyers AI.
Chem. Rev.
1982,
82:
223
1e
Bossert F.
Meyers H.
Wehinger E.
Angew. Chem., Int. Ed. Engl.
1981,
93:
755
2a
Eisner U.
Kuthan J.
Chem. Rev.
1972,
72:
1
2b
Stout DM.
Meyers AI.
Chem. Rev.
1982,
82:
223
3a
Chorvat RJ.
Rorig KJ.
J. Org. Chem.
1988,
53:
5779
3b
Kappe CO.
Fabian WMF.
Tetrahedron
1997,
53:
2803
3c
Kappe CO.
Tetrahedron
1993,
49:
6937
4a
Wysocka-Skrzela B.
Ledochowski A.
Rocz. Chem.
1976,
50:
127
4b
Nasim A.
Brychey T.
Mutat. Res.
1979,
65:
261
4c
Thull U.
Testa B.
Biochem. Pharmacol.
1994,
47:
2307
4d
Reil E.
Scoll M.
Masson K.
Oettmeier W.
Biochem. Soc. Trans.
1994,
22:
62
4e
Mandi Y.
Regely K.
Ocsovszky I.
Barbe J.
Galy JP.
Molnar J.
Anticancer Res.
1994,
14:
2633
5a
Khurana JM.
Maikap GC.
Mehta S.
Synthesis
1990,
731
5b
Matsumoto H.
Arai T.
Takahashi M.
Ashizawa T.
Nakano T.
Nagai Y.
Bull. Chem. Soc. Jpn.
1983,
56:
3009
5c
Nakano T.
Takahashi M.
Arai T.
Seki S.
Matsumoto H.
Nagai Y.
Chem. Lett.
1982,
613
6
Murugan Shanmmugasundaram P.
Ramak Rishan VT.
Venkatachalapathy B.
Srividya N.
Ramamurthy P.
Gunasekaran K.
Velmurugan D.
J. Chem. Soc., Perkin Trans. 2
1998,
999
7
Ondru V.
Orság M.
Fiera L.
Prónayová NPP.
Tetrahedron
1999,
55:
10425
8
Abele E.
Lukevic E.
Heterocycles
2000,
53:
2285
9a
Syassi B.
Bougrin K.
Soufiaoui M.
Tetrahedron Lett.
1997,
38:
8855
9b
de la Cruz P.
Espíldora E.
García JJ.
de la Hoz A.
Langa F.
Martín N.
Sánchez L.
Tetrahedron Lett.
1999,
40:
4889
10
Gedye R.
Smith F.
Westawaym K.
Humera A.
Baldisern L.
Laberge L.
Rousell J.
Tetrahedron Lett.
1986,
27:
279
11a
Mingos DMP.
Baghurst DR.
Chem. Soc. Rev.
1991,
20:
1
11b
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
11c
Lidströin P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
12
Caddick S.
Tetrahedron
1995,
51:
10403
13
The General Procedure is Represented Below: The mixture of substituted aryl aldeoxime (2 mmol) and dimedone (4 mmol) in glycol (5 mL) was irradiated for 4-6 min. The reaction mixture was cooled to r.t. and poured into 50 mL of H2O, filtered to give the crude product, which was further purified by recrystallization from 95% EtOH. All products are characterized by IR and 1H NMR spectral data. Typical spectral data: compound 3i: IR (KBr): 3285, 3069, 2957, 2867, 1624, 1605, 1483, 1396, 1364, 1251, 1170, 1141, 1069, 1012, 981, 922, 886, 816, 773, 728, 599, 567 cm-1. 1H NMR (DMSO-d
6): d = 0.92 (s, 6 H, 2 × CH3), 1.02 (s, 6 H, 2 × CH3), 2.03-2.41 (m, 8 H, 4 × CH2), 4.98 (s, 1 H, CH), 5.81 (d, 1 H, J = 3.00 Hz, furan H), 6.21 (dd, 1 H, J = 3.08 Hz, furan H), 7.35 (d, 1 H, J = 0.90 Hz, furan H), 9.36 (s, 1 H, NH). Compound 3j: IR (KBr): 3280, 3209, 3068, 2959, 2930, 2871, 2721, 1645, 1600, 1488, 1381, 1309, 1273, 1244, 1225, 1188, 1169, 1143, 1121, 1065, 1006, 885, 870, 775, 733, 693, 648, 618, 572, 560 cm-1. 1H NMR (DMSO-d
6): d = 0.63 (t, 3 H, J = 7.56 Hz, CH3), 1.02 (s, 12 H, 4 Ž CH3), 1.24-1.26 (m, 2 H, CH2), 2.02-2.27 (m, 8 H, 4 × CH2), 3.80 (t, 1 H, J = 5.25 Hz, CH), 8.99 (s, 1 H, NH). Compound 4c: IR (KBr): 3300, 2961, 2878, 2674, 1603, 1568, 1490, 1409, 1371, 1323, 1272, 1225, 1141, 1023, 902, 848, 565, 523 cm-1. 1H NMR (DMSO-d
6): d = 0.87 (s, 6 H, 2 × CH3), 1.04 (s, 6 H, 2 × CH3), 2.02-2.68 (m, 8 H, 4 × CH2), 4.93 (s, 1 H, CH), 7.14 (d, 2 H, J = 6.3 Hz, Ar H), 7.25 (d, 2 H, J = 6.3 Hz, Ar H), 10.79 (s, 1 H, OH). Compound 4i: IR (KBr): 3225, 2954, 2871, 1667, 1660, 1504, 1462, 1504, 1462, 1369, 1229, 1154, 1010, 808, 661, 582 cm-1. 1H NMR (DMSO-d
6): d = 0.82 (s, 12 H, 4 Ž CH3), 1.02 (s, 12 H, 4 Ž CH3), 2.00-2.65 (m, 16 H, 8 Ž CH2), 4.47 (s, 2 H, 2 Ž CH), 6.95 (s, 4 H, Ar H), 10.73 (s, 2 H, 2 Ž OH). Compound 4j: IR (KBr): 3308, 2958, 2930, 2867, 2728, 1605, 1562, 1501, 1469, 1359, 1324, 1262, 1220, 1142, 1072, 1007, 1072, 979, 951, 921, 884, 781, 727, 683, 616, 600, 566 cm-1. 1H NMR (DMSO-d
6): d = 0.94 (s, 6 H, 2 × CH3), 1.05 (s, 6 H, 2 × CH3), 2.07-2.61 (m, 8 H, 4 × CH2), 5.12 (s, 1 H, CH), 5.84 (d, 1 H, J = 3.3 Hz, furan H), 6.25 (dd, 1 H, J = 3.0 Hz, furan H), 7.35 (d, 1 H, J = 0.81 Hz, furan H), 10.85 (s, 1 H, OH). Compound 4k: IR (KBr): 3278, 3186, 3052, 2945, 1644, 1603, 1490, 1362, 1229, 1173, 1127, 1034 cm-1. 1H NMR (DMSO-d
6): d = 1.76-1.95 (m, 4 H, CH2), 2.19-2.22 (m, 4 H, =C-CH2-), 2.29-2.48 (m, 4 H, -CO-CH2-), 3.67 (s, 3 H, CH3), 4.85 (s, 1 H, CH), 6.72 (d, 2 H, J = 8.4Hz, Ar H), 7.05 (d, 2 H, J = 8.4 Hz, Ar H), 9.37 (s, 1 H, OH). Compound 4n: IR (KBr): 3298, 2962, 2958, 2966, 2657, 1627, 1552, 1464, 1389, 1298, 1233, 1172, 1144, 1074, 1002, 934, 905, 887, 778, 740, 685, 612,3, 567 cm-1. 1H NMR (DMSO-d
6): d = 0.66 (t, 3 H, J = 7.50 Hz, CH3,), 1.02 (s, 6 H, 2 Ž CH3), 1.05 (s, 6 H, 2 Ž CH3), 1.16-1.20 (m, 2 H, CH2), 2.06-2.63 (m, 8 H, 4 × CH2), 3.85 (t, 1 H, J = 5.25 Hz, CH), 10.60 (s, 1 H, OH).
14 The sing-crystal growth was carried out in EtOH at r.t. X-ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer (graphite monochromator, MoKα radiation λ = 0.71073 Å). The crystal crystallizes with one water molecule. Crystal data for 3g: C24H29NO3, yellow, crystal dimension 0.80 × 0.80 × 0.30 mm, orthorhombic, space group Pca2 (1), a = 1.41862 (3), b = 1.51896 (3), c = 2.07611 (1) Å, α = γ = β = 90°, V = 4.47366(13) Å3, M
r = 379.48, Z = 8, D
c = 1.27 g/cm3, λ = 0.071073 Å, µ (MoKα) = 0.074 mm-1, F(000) = 1632, S = 1.144, R
1 = 0.0652, wR
2 = 0.1510. Crystal data for 4a: C23H28ClFNO4, yellow, crystal dimension 0.58 × 0.58 × 0.40 mm, monoclinic, space group P2(1)/c, a = 12.638(2), b = 14.039 (3), c = 11.102 (2) Å,
= 94.60 (1)°, V = 2140.2 (6) Å3, M
r = 401.46, Z = 4, Dc = 1.246 g/cm3, λ = 0.71073 Å, µ (MoKα) = 0.09 mm-1, F(000) = 856, S = 0.906, R
1 = 0.0398, wR
2 = 0.0932.
15
Martin N.
Quinteiro M.
Seoane C.
J. Heterocycl. Chem.
1995,
32:
235
16
Suarez M.
Loupy A.
Salfran E.
Moran L.
Rolando E.
Heterocycles
1999,
51:
21